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Abstract. Let M be a compact manifold equipped with a Riemannian metric g and a
spin structure σ. We let λ+

min(M, [g], σ) = inf g̃∈[g] λ
+
1 (g̃)V ol(M, g̃)1/n where λ+

1 (g̃) is the
smallest positive eigenvalue of the Dirac operator D in the metric g̃. A previous result

stated that λ+
min(M, [g], σ) ≤ λ+

min(S
n) = n

2 ω
1/n
n where ωn stands for the volume of the

standard n-sphere. The inequality is strict when n ≥ 7 and (M, g) is not conformally
flat. In this paper, we study this problem for conformally flat manifolds of dimension
n ≥ 2 such that D is invertible. E.g. we show that strict inequality holds in dimension
n ≡ 0, 1, 2 mod 4 if a certain endomorphism does not vanish. Because of its tight
relations to the ADM mass in General Relativity, the endomorphism will be called mass
endomorphism. We apply the strict inequality to spin-conformal spectral theory and
show that the smallest positive Dirac eigenvalue attains its infimum inside the enlarged
volume-1-conformal class of g.
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1. Introduction

Let (M, g, σ) be a compact spin manifold of dimension n ≥ 2. For a metric g̃ in the
conformal class [g] of g, let λ+

1 (g̃) be the smallest positive eigenvalue of the Dirac operator
D. Similarly, let λ−

1 (g̃) be the largest negative eigenvalue of D. We define

λ+
min(M, [g], σ) = inf

g̃∈[g]
λ+

1 (g̃)Vol(M, g̃)1/n
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and
λ−min(M, [g], σ) = inf

g̃∈[g]
|λ−1 (g̃)| Vol(M, g̃)1/n

It was proven in [Amm03] that

λ+
min(M, [g], σ) > 0 and λ−

min(M, [g], σ)) > 0.

Several works have been devoted to the study of this conformal invariant. A non-
exhaustive list is [Hij86, Hij91, Lot86, Bär92, Amm03a, Amm03b]. In [Amm03, AHM03],
we proved the following result:

Theorem 1.1. Let (M, g, σ) be a compact spin manifold of dimension n ≥ 2. Then

λ+
min(M, [g], σ) ≤ λ+

min(S
n) =

n

2
ω

1
n
n and λ−min(M, [g], σ) ≤ λ+

min(S
n),

where ωn stands for the volume of the standard sphere Sn. If, in addition, n ≥ 7 and if
(M, g) is not locally conformally flat, then the inequality above is strict.

The strict inequalities

λ+
min(M, [g], σ) <

n

2
ω

1
n
n and λ−min(M, [g], σ) <

n

2
ω

1
n
n ,(1)

obtained in Theorem 1.1 when n ≥ 7 and when (M, g) is not conformally flat, have several
applications. At first, when n ≥ 2, together with Hijazi inequality, each one of the two
inequalities (1) implies the existence of a solution of the Yamabe problem. This problem
is a famous problem of conformal geometry which has been solved by Aubin [Aub76] and
Schoen [Sch84]. The method of [AHM03] then gives a spinorial proof of the Yamabe
problem when (M, g) is a non-conformally-flat manifold of dimension ≥ 7.
Another corollary of the inequalities (1) is the solution of a conformally invariant PDE
which can be read as a nonlinear eigenvalue equation for the Dirac operator. The non-
linearity involves a critical exponent from the point of view of Sobolev embeddings and
hence, this PDE cannot be solved by standard methods. Moreover, from this solution,
one can construct a generalized metric g̃ (see [Amm03b, Amm03a, AHM03]) such that
V olg̃(M) = 1 and such that λ+

1 (g̃) = λ+
min(M, [g], σ) (resp. λ−

1 (g̃) = λ−
min(M, [g], σ)). In

other words, this proves that λ+
min(M, [g], σ) (resp. λ−

min(M, [g], σ)) is attained by the
generalized metric g̃.
In this paper we are interested in obtaining the inequalities (1) when M is a conformally
flat manifold of dimension n ≥ 2 such that D is invertible. In this goal, we introduce
in section 2 the notion of mass endomorphism. This endomorphism corresponds to the
constant term in the development of the Green function for D near the diagonal with
respect to a conformal chart. In Remark 2.12 we will show that the pointwise eigenvalues
of the mass endomorphism are all real. The mass endomorphism plays the same role
as the constant term of the Green function γ( · , p) of the Yamabe operator. In the
Yamabe problem, the constant term of γ can be interpreted as the mass [ADM62] of the
asymptotically flat manifold (M \{p}, γ( · , p)4/(n−2)) (see also [LP87]). This is why we use
the name mass endomorphism. Schoen shows in [Sch84] that the positivity of the mass
implies the Yamabe problem. In this paper, the eigenvalues of the mass endomorphism
play the same role as the mass in Yamabe problem. Namely, we obtain the following
result:
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Theorem 1.2. Let (M, g, σ) be a conformally flat compact spin manifold of dimension
n ≥ 2 with ker(D) = {0}. Assume that the mass endomorphism (see next section)
possesses a negative (resp. positive) eigenvalue. Then

λ+
min(M, [g], σ) (resp. λ−

min(M, [g], σ)) < λ+
min(S

n) =
n

2
ω

1
n
n .

Assume that n 6≡ 3 mod 4, then the spectrum of the Dirac operator and the pointwise
spectrum of the mass endomorphism are symmetric (see Subsection 2.5). In particular,

λ+
min(M, [g], σ) = λ−

min(M, [g], σ).

this implies

Theorem 1.3. Let (M, g, σ) be a conformally flat compact spin manifold of dimension
n ≥ 2 with ker(D) = {0}. Assume that n 6≡ 3 mod 4 and that the mass endomorphism
α is not identically zero. Then

λ+
min(M, [g], σ) < λ+

min(S
n) =

n

2
ω

1
n
n and λ−min(M, [g], σ) < λ+

min(S
n) =

n

2
ω

1
n
n .

This is no longer true if n ≡ 3 mod 4. In Example 2.15 we study the real projective
spaces RP 4k+3. Here the mass endomorphism is a non-vanishing multiple of the identity
section, hence has constant sign which depends on the spin structure. Furthermore, the
two spin structures σ+ and σ− on RP 4k+3 satisfy

λ−min(RP
4k+3, g0, σ+) > λ+

min(RP
4k+3, g0, σ+) =

n

2

(ωn
2

)
1
n

,

λ+
min(RP

4k+3, g0, σ−) > λ−min(RP
4k+3, g0, σ−) =

n

2

(ωn
2

)
1
n

.

Hence, as predicted by Theorem 1.2 either λ+
min or λ−min is smaller than (n/2)ω

1/n
n . As a

remark, if min(λ+
min(RP

4k+3, g0, σ−), λ−min(RP
4k+3, g0, σ−)) < (n/2)ω

1/n
n then the infimum

in the definition of λ±
min would be attained by a metric of non-constant curvature. It is

then natural to think that we cannot obtain the strict inequality (1) for λ+
min and λ−min for

all manifolds of dimension n ≡ 3 mod 4.
In order to prove inequalities (1) for arbitrary conformally flat manifolds of dimension
n ≥ 2 such that D is invertible, then one has to find some nonzero eigenvalues of the mass
endomorphism. Some questions arises naturally. At first, on the sphere Sn, the mass
endomorphism is null. Otherwise, we could apply Theorem 1.2. One may wonder if the
mass endormorphism is not always zero. The answer is no since as mentionned above, the
projective spaces give example for which the mass endomorphism is a nonzero multiple
of identity.
Recall once again that the constant term of the Green function of the Yamabe operator
can be interpreted as the mass of an asymptotically flat manifold; according to the positive
mass theorem it is positive unless isM is conformally diffeomorphic to Sn. Then, one could
hope to find a result of the same type for the mass endomorphism. However, we show
that this is false in general. Namely, we show in Section 4 that the mass endomorphism
of flat tori always vanishes.
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2. The mass endomorphism

In the following, we assume that (M, g, σ) is a conformally flat manifold of dimension n ≥
2. We also assume that D is invertible, i.e. that ker(D) = {0}. The mass endomorphism
is defined as the constant term in the Green function for D. In this section, we give a
precise definition and some properties of the mass endomorphism.

2.1. Trivialization of the spinor bundle. Let ρ : U ⊂ (M, g) → V ⊂ (N, gN) be an
conformal map presering orientation and spin structure. We write g = f 2ρ∗gN . Then
according to [Hit74, Hij86] there is a fiberwise isomorphism

ρ∗ : Σ(M, g)|U → Σ(N, gN)|V
↓ ↓
U → V,

such that DNρ∗ϕ = fρ∗Dϕ for all ϕ ∈ Γ(ΣM) and f−n−1
2 ρ∗ is an isometry, where D and

DN denote the Dirac operators on M and N . The most important case we will use is that
N is Euclidean space, i.e. ρ is a conformal chart of (M, g) preserving orientation and the
spin structure. In this case the above map yields a well chosen trivialization of the spinor
bundle. This actually is a special and simple case of the the Bourguignon-Gauduchon
trivialization introduced in [AHM03].
The definition of the mass endomorphism will be done by working with a conformal charts.
For simplicity we will first define it in the special case that g is flat in a neighborhood of
a given base point, and then extend it to the general case.

2.2. Green function for the Dirac operator. Let π1, π2 : M × M → M be the
projection to the first and second component. Then we define

ΣM � ΣM∗ := π∗
1(ΣM) ⊗ (π∗

2(ΣM))∗,

i.e. it is the bundle whose fiber over (x, y) is given by Hom(ΣyM,ΣxM). Let ∆ :=
{(p, p) | p ∈M} be the diagonal.

Definition 2.1. A smooth section GD : M ×M \ ∆ → ΣM � ΣM ∗ is called the Green
function for the Dirac operator D if in the sense of distributions

Dx(GD(x, y)) = δyIdΣyM

In other words, we have for any y ∈M , ψ0 ∈ ΣyM , and ϕ ∈ Γ(ΣM)
∫

〈GD(x, y)ψ0, Dϕ(x)〉 dx = 〈ψ0, ϕ〉.

For k : M ×M \ ∆ → ΣM � ΣM ∗ we denote the corresponding integral operator by Pk,
i.e. we define for ϕ ∈ Γ(ΣM)

Pk(ϕ)(x) :=

∫

k(x, y)ϕ(y) dy

if the integral exists in the principle value sense. Pk uniquely determines k. In this
notation PGD

is the inverse of D : L2
1(ΣM) → L2(ΣM). Hence, the Green function is

unique.
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Remark 2.2. Analogously, one can define the Green function of Euclidean space as a
section Geucl : Rn × Rn \ ∆ → ΣM � ΣM ∗ such that PGeucl

is the inverse of Deucl :
L2

1(ΣM) → L2(ΣM). Again we have unicity. One easily checks that

Geucl(x, y) =
1

ωn−1

x− y

|x− y|n
· .

In our construction of the test spinor, we will need the asymptotic of Green functions
close to the diagonal. This is provided by the following proposition.

Proposition 2.3. Assume that the metric is flat near y ∈M , and let ρ be an isometric
chart. Then, the Green function GD for D exists, and in the above trivialization has the
following expansion when x tends to y

ωn−1GD(x, y)ψ0 =
x− y

|x− y|n
· ψ0 + v(x, y)ψ0

where Dxv(x, y)(ψ0) = 0 on a neighborhood of y.

Proof: Let GDeucl
be the Green function for Deucl on Rn given by Remark 2.2. We take a

cut-off function η with support in By(δ) which is equal to 1 on By(δ/2) where δ > 0 is a
small number. We set Φ(x) = η(x)GDeucl

(x, y) · ψ0 where ψ0 is constant. The spinor Φ is
harmonic on By(δ/2)\{y}. We extend Φ by zero, and obtain a smooth spinor on M \{y}.
As DΦ|By(δ/2) ≡ 0, we see that DΦ extends to a smooth spinor on M , denoted by Ψ. Since
D is assumed to be invertible, there exists a smooth spinor field ζ such that Dζ = −Ψ.
We then define GD(x, y)ψ0 := Φ(x)− ζ(x). It is easy to see that GD is the Green function
for D and has the development described above. As Ψ and hence ζ depend smoothly on
y, it is clear thet GD(x, y) depends smoothly on y outside of the diagonal. �

Lemma 2.4 (Conformal change and Green functions). Let ρ : (M, gM , σ) → (N, gN , σN )
be a conformal map preserving the orientation and the spin structure and write gM =
f 2ρ∗gN . Let GM resp. GN be the Green function on M resp. N , then

GN(x, y) = fn−1(y)ρ∗,x ◦GM(x, y) ◦ ρ−1
∗,y.

Proof. We already know that DN = fρ∗Dρ
−1
∗ . This implies

PGN
= D−1

N = ρ∗D
−1ρ−1

∗ f−1 = ρ∗PGM
ρ−1
∗ f−1,

Hence,

GN(x, y) dµN(y) = f−1(y)ρ∗,x ◦GM(x, y) ◦ ρ−1
∗,y dµ(y).

With dµ = fndµN this implies the lemma. �
In particular, the previous proposition and the lemma imply that the Green function GD

for D exists on any conformally flat manifold.

Example 2.5. If ϕλ is an eigenspinor for the eigenvalue λ of D, and if GD is the unique
Green function for D, then

∫

M

GD(x, y)ϕλ(y) dy =
1

λ
ϕλ(x)
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Example 2.6. Let ρ : Sn \ {N} → Rn be the stereographic projection. Then

gSn =

(

2

|ρ(x)|2 + 1

)2

ρ∗geucl.

Let GSn be the Green function on Sn. An obvious modification of Lemma 2.4 tells us
that

ρ∗GSn(x, y)ρ−1
∗ =

(

2

|ρ(x)|2 + 1

)1−n

Geucl(ρ(x), ρ(y)).

Example 2.7. Let ρ : Sn → Sn be a Moebius transformation of Sn with gSn = f 2ρ∗(gSn).
Then

GSn(x, y) = fn−1(y)ρ∗,x ◦GSn(x, y) ◦ ρ−1
∗,y.

In the sequel the following self-adjointness result for GD will be important

Proposition 2.8. Let V be an open set of M in which g is flat. Then, for all x 6= y ∈ V ,
GD(x, y)∗ = GD(y, x). In other words,

〈GD(x, y)ψy, ϕx〉 = 〈ψy, GD(y, x)ϕx〉

for all ψy ∈ ΣyM and ϕx ∈ ΣxM .

Proof: We have

P ∗
GD

=
(

D−1
)∗

= (D∗)−1 = D−1 = PGD
.

As the operator uniquely determines the kernel, this implies the proposition. �

Proposition 2.9. Assume that we have two metrics g1 and g2 on M g1 = f 2g2. We
assume that both metrics are flat in a neighborhood U of y. We define v1 and v2 as above.
Then

v1(x, x) = f 1−nv2(x, x)

Proof. Let G1 (resp. G2) be the Green function for g1 (resp. g2). We identify spinors via
ρ∗. By Lemma 2.4, G1 and G2 are related by the following formula: for all x, y ∈M ,

(2) G1(x, y) = f 1−n(y)G2(x, y)

Let h1 : (U, g1) → Rn and h2 : (U, g2) → Rn be isometric embeddings. According to
Liouville’s theorem the conformal map h2 ◦ h

−1
1 : h1(U) → h2(U) extends to a Möbius

transformation of the Alexandrov compactification Sn of Rn. Because of Examples 2.6
and 2.7 this implies that

G1
eucl(x, y) = f 1−n(y)G2

eucl(x, y).

Subtracting this from (2), and taking the limit x→ y one obtains the desired formula. �
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2.3. Definition and first properties of the mass endomorphism. The mass endo-
morphism is defined as the constant term of the Green function for D with respect to a
conformal chart. Let us make this precise.

Definition 2.10. Let (M, g) be a compact manifold which is conformally flat on a neigh-
borhood of y ∈ M . Choose a metric g̃ ∈ [g] that is flat on a neighborhood of y and
such that g̃y = gy. Let GD be the Green function for D. Then we define the mass
endomorphism as

αy :

∣

∣

∣

∣

Σy(M) → Σy(M)
ψ0 7→ v(y, y)(ψ0)

where v is as in the previous paragraph with respect to g̃.

Because of Proposition 2.9 this definition does not depend on the choice of g̃.

Proposition 2.11. For each y ∈M , the mass endomorphism αy is linear and self-adjoint.

Proof: Let y ∈M and ψ0, ϕ0 ∈ Σy(M). We have

αy(ψ0) = lim
x→y

ωn−1GD(x, y)ψ0 −
x− y

|x− y|n
· ψ0

It follows immediatly that αy is linear. Taking the limit when x→ y one gets that

〈αy(ψ0), ϕ0〉 = 〈ψ0, αy(ϕ0)〉

�

Remark 2.12. Proposition 2.11 immediatly implies that the mass endomorphism has only
real eigenvalues.

Remark 2.13. If dimM ≡ 2, 3, 4 mod 8, then the spinor bundle carries a quaternionic
structure, i.e. a basepoint-preserving, parallel, complex anti-linear map Q : ΣM → ΣM
with Q−1 commuting with the Clifford multiplication. As a consequence Q commutes
with D, GD and with α.

2.4. Examples.

Example 2.14 (Flat tori). Let (M, g) be an n-dimensional flat torus. It carries 2n

spin structures. For one spin structure, the so-called trivial spin structure, we have a
rank(ΣM) = 2[n/2]-dimensional space of parallel sections. All other spin structures admit
no non-trivial parallel spinors. Because M is scalar-flat, the kernel of D consists exactly
of the parallel spinors, in particular D is invertible for all non-trivial spin structures
χ. Because translations act spin-isometric on (M, g, χ), the Green function GD satisfies
GD(x, y) = GD(x− y, 0). Also Dx(GD(y, x)) = −δ(x − y), hence GD(x, y) = −GD(y, x).
Therefore, all terms of even order in the development of GD have to vanish. In particular,
the mass endomorphism vanishes.

Example 2.15 (Real Projective Spaces). Besides RP 1 = S1, the only real projective
spaces that are orientable and spin are RP 4k+3 with k ∈ N. The space M = RP 4k+3

carries exactly two spin structures. The universal covering π : S4k+3 → RP 4k+3 induces
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a push-forward of the spinor bundles, which is a fiberwise isomorphism π∗ : ΣpS
4k+3 →

Σπ(p)RP 4k+3. One calculates

(3) G
�
P 4k+3

D (πx, πy) ◦ π∗ = π∗G
S4k+3

D (x, y) + π∗G
S4k+3

D (x,−y),

where −y denotes the antipodal point of y. Stereographic projection based in y 6∈ {x,−x}

defines a conformal chart containing x and −x. Example 2.6 implies that GS4k+3

D (x,−x) 6=
0. Hence, the mass endomorphism απ(x) of RP 4k+3 does not vanish anywhere on RP 4k+3.
The group of orientation preserving isometries fixing π(x) is SO(4k + 3). After passing
to the double cover Spin(4k+3), we obtain a Spin(4k+3)-action on ΣS4k+3, that pushes
down to a Spin(4k+3)-action on ΣS4k+3 which commutes with the Dirac operator. Hence,
this action also commutes with the mass endomorphism, and as the Spin(4k+3)-action on
Σπ(x)RP 4k+3 is irreducible, the mass endomorphism is a constant multiple of the identity
[LM89, Prop. I.5.15], [Fri00, section 1.5]. If one changes the spin structure, then the
second summand in (3) changes its sign. Hence, the sign of the mass endomorphism
depends on the choice of the spin structure, which are denoted by σ+ and σ−.

2.5. Endomorphisms generating symmetries. The aim of this section is to show that
if n 6≡ 3 mod 4, then there is an automorphism Γ(Aut � (ΣM)) that anticommutes with
the Dirac operator. This result is well-known, see for example [Fri00, 1.7], [Dah03, Prop.
5]. As a consequence, one sees that it also anticommutes with the mass endomorphism.
Let (W, γ) be an irreducible complex representation of the Clifford algebra of an Euclidean
vector space V of dimension n. After fixing an orientation on V , one can define

ωγ := γ(e1 · . . . · en) ∈ End(W )

where e1, . . . , en is an oriented orthonormal basis on V , and where γ denotes Clifford
multiplication. One easily calculates

ω2 := (−1)n(n+1)/2.

As a consequence the eigenvalues of ω are contained in {−1, 1} if n ≡ 0, 3 mod 4, and
they are contained in {−i, i} if n ≡ 1, 2 mod 4.

The case n ≡ 0 mod 2.

If n is even, then Clifford multiplication by a vector v ∈ V anticommutes with ω. Hence,
if α is an eigenvalue ω, then so is −α. One immediately obtains the well-known lemma.

Lemma 2.16. If n is even, then ω is a complex-linear automorphism of W anticommuting
with Clifford-multiplication.

Indeed, it can even be shown that up to automorphisms there is only one irreducible
representation in even dimensions n and that any endomorphism anticommuting with
Clifford multiplication with vectors is a multiple of ω.

The case n ≡ 1 mod 4.

The question arises, whether there is a similar endomorphisms if n is odd. In this case,
Clifford multiplication with a vector commutes with ω. Hence, by Schur’s lemma ω has
only one eigenvalue. For n ≡ 1 mod 4 we have either ω = i Id or ω = −i Id, and it can
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be shown, that there is exactly one irreducible representation of V with ω = i Id denoted
by (W i, γi), and one with ω = −i Id, denoted by (W−i, γ−i). If we replace the complex
structure on W±i, by its complex conjugate one, then this is again a representation of the
(real) Clifford algebra of V . Obviously, ω changes sign by conjugation. Hence, there is a
conjugated linear isomorphism of Clifford representation α : W i →W−i. Another way to
modify the structure of (W i, γi) is to reverse the sign of Clifford multiplication by vectors.
Namely, we define a Clifford multiplication τ i : Cl(V ) → End(W ) as τ i(X) := −γi(X)
for all vectors X in V . Again, we calculate that the sign of ω changes if we replace τ i

by γi, and there is a complex linear isomorphism of vector spaces β : W−i → W i with
β ◦ γ−i(X) = τ i(X) ◦ β for any vector X ∈ V . Hence, ν := β ◦ α : W i → W i is a
conjugated linear automorphism of vector spaces, and for vector X we have

γi(X) ◦ ν = −τ i(X) ◦ β ◦ α = −β ◦ γi(X) ◦ α = −ν ◦ γi(X).

A similar endomorphism of W−i is given by α ◦ β. We have proven the following lemma.

Lemma 2.17. If n ≡ 1 mod 4, then there is a real vector space automorphism of W ±i

anticommuting with Clifford multiplication by vectors. The automorphism is conjugated
linear.

The case n ≡ 3 mod 4.

The case n ≡ 3 mod 4 is different. Again, we have ω = Id or ω = −Id, and there is
exactly one irreducible representation (W±, γ±) in each case. However, conjugation does
not exchange the representations, and the sign of ω is invariant under real automorphisms.
Hence, an isomorphism as in the above lemma cannot exist.

For all n 6≡ 3 mod 4.

Any automorphism ν anticommuting with Clifford multiplication, commutes with bivec-
tors X · Y where X, Y ∈ V . As the Lie algebra of Spin(n) is generated by elements of
that form, such an isomorphisms ν is Spin(n)-equivariant. We obtain the well-known

Proposition 2.18. If n ≡ 0, 1, 2 mod 4, then there is a real vector bundle isomorphism
ν : ΣM → ΣM anticommuting with Clifford multiplication by vectors, complex linear if n
is even, and conjugated linear if n ≡ 1 mod 4. Furthermore, ν is parallel.

It follows that it anti-commutes with the Dirac operator, the Green function and the mass
endomorphism.

Corollary 2.19 (Well-known, e.g. [APS76]). The spectrum of the Dirac operator is sym-
metric in dimension n 6≡ 3 mod 4.

Corollary 2.20. The pointwise spectrum of the mass endomorphism is symmetric in
dimension n 6≡ 3 mod 4, i.e. if λ is an eigenvalue of the mass endomorphism αx for an
x ∈M , then −λ is also an eigenvalue of αx with the same multiplicity.

Corollary 2.21. If dimM = 2, then the mass endomorphism α vanishes.

Proof. The spectrum of αy is symmetric and real. As α commutes with the quaternionic
multiplication Q, the eigenspaces of α are quaternionic vector spaces. dim ΣyM = 2
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implies that αy = ryId for ry ∈ R. As the spectrum of αy is symmetric, we obtain
ry = 0. �

3. The estimates

Let ψ ∈ Γ(ΣM) and define

J(ψ) =

(

∫

M
|Dψ|

2n
n+1 vg

)
n+1

n

∫

M
<e〈Dψ, ψ〉vg

The first named author proved in [Amm03] that

λ+
min(M, [g], σ) = inf

ψ
J(ψ)(4)

where the infimum is taken over the set of smooth spinor fields for which
(

∫

M

<e〈Dψ, ψ〉vg

)

> 0 .

By adjusting some signs appropriately, one obtains by the same reasoning that

λ−min(M, [g], σ) = inf
ψ

−J(ψ)(5)

where the infimum is taken over the set of smooth spinor fields for which
(

∫

M

<e〈Dψ, ψ〉vg

)

< 0 .

These two facts will be helpful to prove the following theorem

Theorem 3.1. Assume that there exists on (M, g) a conformal metric gp ∈ [g] which is
flat in a neighborhood of a point p. If there exists on M \ {p} a spinor field ψ satisfying

• Dψ = 0
• ψ admits the following development near the point p:

ψ =
x

rn
· ψ0 + ψ1 + θ

where ψ0 and ψ1 are two spinors of ΣpM such that

<e(〈ψ0, ψ1〉) < 0 (resp. <e(〈ψ0, ψ1〉) > 0) ,

and where θ = O(r) is an harmonic spinor field smoothly defined in a neighborhood
of p.

Then we have

λ+
min(M, [g], σ) <

n

2
ω

1
n
n

(

resp. λ−
min(M, [g], σ) <

n

2
ω

1
n
n

)

.

Proof. The proof is based on a suitable choice of a test spinor field ψε to estimate J(ψε).
We let

f(r) :=
1

1 + r2
.
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As a first step, we consider for a given Φ the spinor defied by we for all x ∈ Rn,

ϕ±(x) := f(|x|)
n
2 (1 ∓ x) · Φ, ∀x ∈ Rn

One may compute that

D(ϕ±) = ±nf(|x|)ϕ± .

Since the Euclidean space (Rn \{0}, geucl) and the standard sphere (Sn, g0 = 4f 2(|x|)geucl)
are isometric and using the conformal covariance of D, it is well known (see [AHM03])
that there exists a natural map

m

∣

∣

∣

∣

Γ(Σ(Rn \ {0})) → Γ(Σ(Sn))
ϕ 7→ m(ϕ)

such that for all vector field ϕ ∈ Γ(Σ(Rn \ {0})), we have

m(D(ϕ)) = 2fD � n(m(ϕ))

As one can check the spinor field m(ϕ+) is a Killing spinor on Sn to the Killing constant
−1

2
, whereas m(ϕ−) is a Killing spinor on Sn to the Killing constant + 1

2
. One gets that

J �
n(ϕ±) = ±

n

2
ω

1
n
n

where J �
n is the functional J written on Rn. Now, fix ε > 0 and let (x1, · · · , xn) be local

coordinates on a neighborhood U of p in M . On U , we trivialize the spinor bundle via
parallel transport. Using this trivialization, one may define for x ∈M ,

ϕ±
ε := η0ϕ

±(
x

ε
)

where η0 is a cut-off function equal to 1 on B(p, δ) (δ is a small number). Computing
J(ϕ±

ε ), it is proven in [AHM03] that

lim
ε→0

J(ϕ+
ε ) ≤

n

2
ω

1
n
n

and

lim
ε→0

−J(ϕ−
ε ) ≤

n

2
ω

1
n
n .

However, we would like to have test spinors ψ± with ±
∫

〈Dψ±, ψ±〉 > 0 for which the
strict inequalities

±J(ψ±) <
n

2
ω

1
n
n

hold. The methods in [AHM03] do not provide such test spinors when the Weyl tensor
vanishes at p. To prove 3.1, we have to modify the above test spinor. For a given ε > 0
we set

ρ := ε
1

n+1 ε0 :=
ρn

ε
f(
ρ

ε
)

n
2 .

The test spinor we use here is the following:
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(6) ψ±
ε :=



























f( r
ε
)

n
2 (1 ∓ x

ε
) · ψ0 ∓ ε0ψ1 if r ≤ ρ ,

∓ε0(ψ − ηθ) + ηf(ρ
ε
)

n
2 ψ0 if ρ ≤ r ≤ 2ρ ,

ε0 ψ if r ≥ 2ρ ,

where r = |x|, where η is a cut-off function which equals to 1 on B(p, ρ), which is zero on
the complement of B(p, 2ρ) and which statisfies

|∇η| ≤
2

ρ
.

Note that ψ±
ε is continuous on M .

Remark 3.2. It should be pointed that this choice of ρ is arbitrary in the following sense.
The proof of Theorem 3.1 still holds for any choice of ρ = εq for q ∈] n−1

n(n+1)
, 1
n
[.

We can assume without loss of generality that |ψ0| = 1. Since ψ and θ are harmonic near
p, we have

(7) Dψ±
ε =



























±n
ε
f( r

ε
)

n
2
+1(1 ∓ x

ε
) · ψ0 if r ≤ ρ ,

±ε0∇η · θ + f(ρ
ε
)

n
2 ∇η · ψ0 if ρ ≤ r ≤ 2ρ ,

0 if r ≥ 2ρ .

Therefore, since |(1 ∓ x
ε
) · ψ0|

2 = (1 + r2

ε2
)|ψ0|

2 = f( r
ε
)−1, we have

(8) |Dψ±
ε |

2n
n+1 =































[

n
ε
f( r

ε
)

n+1
2

]
2n

n+1
= n

2n
n+1 ε−

2n
n+1f( r

ε
)n if r ≤ ρ ,

| ± ε0∇η · θ + f(ρ
ε
)

n
2 ∇η · ψ0|

2n
n+1 if ρ ≤ r ≤ 2ρ ,

0 if r ≥ 2ρ .

In the following, the notation C will stand for positive constants (eventually depending
on the dimension n but not on ε) which can differ from one line to another. Equation (8)
yields the following estimates:

∫

B(p,ρ)

|Dψ±
ε |

2n
n+1 = εn−

2n
n+1n

2n
n+1

∫

B(p, ρ
ε
)

fn ≤ εn−
2n

n+1n
2n

n+1

∫

�
n

fn

and
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∫

B(p,2ρ)\B(p,ρ)

|Dψ±
ε |

2n
n+1 ≤ C

∫

B(p,2ρ)\B(p,ρ)

| ε0∇η · θ|
2n

n+1 + C ′

∫

B(p,2ρ)\B(p,ρ)

|f(
ρ

ε
)

n
2 ∇η · ψ0|

2n
n+1

≤ C ε
n(2n−1)

n+1 + C ε
n(3n−1)

n+1 ≤ C ε
n(2n−1)

n+1 ,

since ε0 ≤ C εn−1, |∇η| ≤ 2
ρ
, V ol(B(p, 2ρ) \B(p, ρ)) ≤ Cρn and |θ| ≤ C ρ on B(p, 2ρ), as

well as f(ρ
ε
)

n
2 ≤ C ε

n2

n+1 .
Therefore

(9)

(
∫

M

|Dψ±
ε |

2n
n+1

)
n+1

n

≤ εn−1n2I1+ 1
n

[

1 + C ε
n2

n+1

]

= εn−1n2I1+ 1
n

[

1 + o(εn−1)
]

,

where I :=
∫

�
n f

n.
If we set

ν := 〈ψ0, ψ1〉 ,

we have

<e〈Dψ±
ε , ψ

±
ε 〉|B(p,ρ) = <e〈±

n

ε
f(
r

ε
)

n
2
+1(1 ∓

x

ε
) · ψ0 , f(

r

ε
)

n
2 (1 ∓

x

ε
) · ψ0 ∓ ε0 ψ1〉

= ±
n

ε
f(
r

ε
)n −

n

ε
ε0 f(

r

ε
)

n
2
+1 <e(ν) ±

n

ε
ε0 f(

r

ε
)

n
2
+1 <e〈

x

ε
· ψ0, ψ1〉

and hence, since by symmetry the last term vanishes when integrating over B(p, ρ), we
have

∫

B(p,ρ)

<e〈Dψ±
ε , ψ

±
ε 〉 = n εn−1

[

±

∫

B(p, ρ
ε
)

f(r)n − <e(ν)ε0

∫

B(p, ρ
ε
)

f(r)
n
2
+1

]

.

Moreover,
∫

B(p, ρ
ε
)

f(r)n = I − ωn−1

∫ +∞

ρ

ε

rn−1f(r)ndr ,

Since
∫ +∞

ρ

ε

rn−1f(r)ndr ≤

∫ +∞

ρ

ε

r−(n+1)dr ≤ C ε
n2

n+1

and since ε0 ∼ εn−1 when ε→ 0, we have, for <e(ν) < 0,

(10)

∫

B(p,ρ)

<e〈Dψ+
ε , ψ

+
ε 〉 ≥ n εn−1

[

I − C0 <e(ν)ε
n−1 + o(εn−1)

]

,

and for <e(ν) > 0,

(11) −

∫

B(p,ρ)

<e〈Dψ−
ε , ψ

−
ε 〉 ≥ n εn−1

[

I + C0 <e(ν)ε
n−1 + o(εn−1)

]

,

where

C0 =

∫

�
n

f(r)
n
2
+1
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We also have

<e〈Dψ±
ε , ψ

±
ε 〉|B(p,2ρ)\B(p,ρ) = <e〈±ε0∇η · θ + f(

ρ

ε
)

n
2 ∇η · ψ0,∓ε0(ψ − ηθ) + ηf(

ρ

ε
)

n
2 ψ0〉

= <e〈±ε0∇η · θ + f(
ρ

ε
)

n
2 ∇η · ψ0,∓ε0 ψ〉

since <e〈∇η · θ, θ〉 = 0 , <e〈∇η · ψ0, ψ0〉 = 0 and

<e〈∇η · ψ0, θ〉 + <e〈∇η · θ, ψ0〉 = <e〈∇η · ψ0, θ〉 − <e< ∇η · ψ0, θ〉 = 0 .

Now, we write that on B(p, 2ρ) \ B(p, ρ), ε0|ψ| ≤ Cεn−1ρ−(n−1), ε0|∇η||θ| ≤ Cεn−1 and
ε0f(ρ

ε
)

n
2 |∇η| ≤ Cεn−1. This leads to

<e〈Dψ±
ε , ψ

±
ε 〉|B(p,2ρ)\B(p,ρ) ≤ Cε2n−2ρ1−n ,

which yields
∫

B(p,2ρ)\B(p,ρ)

<e〈Dψ±
ε , ψ

±
ε 〉 = O(ε2n−2+ 1

n+1 ) = o(ε2n−2) .(12)

Therefore, since

<e〈Dψ±
ε , ψ

±
ε 〉|M\B(p,2ρ) = 0 ,

from Equations (10), (11), (12), we have for <e(ν) < 0,
∫

M

<e〈Dψ+
ε , ψ

+
ε 〉 ≥ n εn−1I

[

1 − C0 <e(ν)ε
n−1 + o(εn−1)

]

,

and for <e(ν) > 0,

−

∫

M

<e〈Dψ−
ε , ψ

−
ε 〉 ≥ n εn−1I

[

1 + C0 <e(ν)ε
n−1 + o(εn−1)

]

,

Together with (9), we then have, for <e(ν) < 0,

J(ψ+
ε ) ≤ n I

1
n

1 + o(εn−1)

1 − C0 <e(ν)εn−1 + o(εn−1)
,

and for <e(ν) > 0,

−J(ψ−
ε ) ≤ n I

1
n

1 + o(εn−1)

1 + C0 <e(ν)εn−1 + o(εn−1)
.

For ε small enough, we obtain

J(ψ+
ε ) < nI

1
n and − J(ψ−

ε ) < nI
1
n

Recall now the following fact: let p be any point of the round sphere Sn. Then Sn \ {p}
is isometric to Rn with the metric

g � = 4f 2geucl .

Therefore

2nI =

∫

�
n

2nfn = ωn ,
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which yields, for <e(ν) < 0 (resp. for <e(ν) > 0)

J(ψ+
ε ) <

n

2
ω

1
n
n (resp. − J(ψ−

ε ) <
n

2
ω

1
n
n ) .

Hence, by (4) and (5), the proof of Theorem 3.1 is now complete. �

4. Proofs of Theorems 1.2 and 1.3

Let p ∈ M . Up to a conformal change of metric, we may assume that g is flat near p.
Assume that the mass endomorphism αp possesses a non-zero eigenvalue ν. Let ψ0 ∈
Σp(M) be an eigenvector associated to ν. Then, we set

ψ = ωn−1GD(x, p)ψ0

The spinor field ψ then satisfies the assumptions of Theorem 3.1 with ψ1 = νψ0. Theorem

3.1 implies that if ν < 0 then λ+
min(M, g, θ) < n

2
ω

1
n
n and if ν > 0, λ−

min(M, g, θ) < n
2
ω

1
n
n .

This proves theorem 1.2. Now, if n 6≡ 3 mod 4, the spectrum of the mass endomorphism
is symmetric and hence if αp 6= 0, ν can be chosen positive or negative. This proves
theorem 1.3.
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