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Abstract

In this paper we will present two upper estimates for the smallest
area of a possibly singular minimal surface in a closed Riemannian
manifold Mn with a trivial first homology group. The first upper
bound will be in terms of the diameter of Mn, the second estimate
will be in terms of the filling radius of a manifold, leading also to
the estimate in terms of the volume of Mn. After that we will es-
tablish similar upper bounds for the smallest volume of a stationary
k-dimensional integral varifold in a closed Riemannian manifold M n

with H1(M
n) = ... = Hk−1(M

n) = {0}, (k > 2). The above results
are the first results of such nature.

1 Main results

In this paper we prove an effective version of results of J. Pitts ([P] , section
4) establishing the existence of stationary integral varifolds of all dimensions
≤ i corresponding to a homology class h ∈ Hi(M

n) for closed Riemannian
manifold Mn. Namely, we are able to give a priori upper bounds for the
smallest volume of a stationary integral varifold of dimension k in M n in
terms of the diameter or Mn or in terms of the volume of Mn. However, we
are able to do this only in the situation when all homology groups of Mn

of dimensions < k vanish. Moreover, we will need the homological filling
functions in these dimensions for our estimates. (These homological filling
functions will be defined below.)

For readers who are not familiar with Geometric Measure Theory note
that stationary integral k-dimensional varifolds are (singular) minimal sub-
manifolds. The set of singular points has k-dimensional Hausdorff measure
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zero. The set of regular points consists of countably many k-dimensional
submanifolds of Mn with positive integral multiplicities. The k-dimensional
Hausdorff measure of the regular set where each point is counted with its
multiplicity is called the mass of the varifold and must be finite. The station-
arity of a varifold v has the following formal meaning: Let X be a smooth
vector field on Mn. Consider the corresponding 1-parametric flow of dif-
feomorphisms Φt. Apply these diffeomorphisms to v and consider the mass
of the resulting varifold as a function of t. By definition, v is stationary, if
t = 0 is a critical point of this function.

We would like also to note that there exists an oriented analog of integral
varifolds, namely, integral cycles. Since one can integrate k-forms over inte-
gral k-cycles, they can be regarded as a subset of the dual space to the space
of k-forms and often are considered with a toplogy of the dual space. The
dual space norm of k cycles is called their mass. F. Almgren proved ([A])
that the ith homotopy group of the space of integral k-cycles is isomorphic
with the (i + k)th homology group of the ambient manifold. This fact plays
a crucial role in the geometric measure theory. Yet integral cycles have the
following technical disadvantage in comparison with integral varifolds: the
mass is not a continuous function on the space of cycles. Indeed, consider
a translate of a cycle z in Rn by a small vector. Consider the sum of this
translate and −z (that is, z taken with the opposite orientation). If ε 6= 0
then the mass of the cycle is equal to twice the mass of z. Hoewer, when
ε become equal to zero the cycles cancel each other and the mass is equal
to zero. If one would forget about the orientations and consider the corre-
sponding varifolds, then this phenomenon cannot take place: the mass is a
continuous functionional on spaces of varifolds.

Following an earlier work of F. Almgren J. Pitts developed a version of
Morse theory for spaces of cycles. He described how one can start from a
non-trivial homology class of the manifold and to assign to it non-trivial
stationary integral varifolds in each dimension lower than the dimension of
the homology class. He used the Almgren isomorphism between homology
groups of the manifold and homotopy groups of the space of cycles here.
Note that one gets here merely stationary varifolds instead of minimal cycles
precisely because of the mentioned above technical problem with the possible
vanishing of the mass of cycles in the limit.

In this paper we provide a quantitative version of Pitts’s results. We com-
bine his technique with our technique from [NR1] to derive upper bounds for
the volume of the stationary integral cycles. Our results could, thus, be con-
sidred as a multidimensional generalization of results of [NR1]. Yet, they are
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different from the results of [NR1] in the following three aspects: 1. Here we
need to assume that first (k − 1) homology groups of the Riemannian man-
ifold vanish, whenever we did not need any assumptions about the ambient
Riemannian manifold in [NR1]; 2. In [NR1] stationary 1-dimensional vari-
folds had only finitely many pieces (and the number of pieces was controlled
in terms of the dimension of the manifold); and 3. Our present estimates in-
volve not only diameter or volume but also defined below homological filling
functions. However, we believe that the last limitation is unavoidable and
the minimal volume of, say, a minimal hypersurface in a three-dimensional
Riemannian manifold diffeomorphic to S3 cannot be majorized only in terms
of the diameter of the manifold. Our present results can be also compared
with the results of [NR2]. There we considered only the case when the am-
bient manifold is diffeomorphic to S3. Moreover, our estimates required a
two-sided bound for the sectional curvature of the manifold. However there
we got an upper bound for the area of a minimal surface diffeomorphic to S2,
whereas here we provide an upper bound for the area of a minimal surface
of an unknown topological type.

In order to state our results we need the notion of homological filling
functions. In the definition below we will be considering only singular chains
with smooth simplices. The volume of a singular simplex will be defined as
the volume of the standard simplex endowed with the pullback measure;
the volume of a singular chain Σiaiσi, where ai ∈ R and σi are singular
simplices, is defined as Σ|ai| vol(σi).

Definition 1.1 (Homological filling function.) Let Mn be a closed
Riemannian manifold of dimension n. Let γ(t) denote a closed
piecewise differentiable curve. Then the homological filling function
FH = FH1 : R+ −→ R+ will be defined as follows: FH(x) =
max{γ(t)|length(γ(t))≤x} min{Σ2|∂Σ2=γ(t)} Area(Σ2), where Σ2 is a singular 2-
chain, and Area(Σ2) denotes its area.

Definition 1.2 (Homological filling function in dimension k > 1.)
Let Mn be a closed Riemannian manifold of dimension n with the triv-
ial k-th homology group. Then the homological filling function of or-
der k, FHk : R+ −→ R+ will be defined as follows: FHk(x) :=
max{Σk|m(Σk)≤x} min{Σk+1|∂Σk+1=Σk} m(Σk+1), where Σk,Σk+1 are singular
chains of dimension k, k + 1 respectively.

Firther, recall that M. Gromov ([Gr]) defined the filling radius of a closed
Riemannian manifold Xn embedded in a metric space Y as the minimal
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radius of a neighborhood of Xn in Y such that Xn bounds in this neighbor-
hood. The filling radius of an abstract closed Riemannian manifold Xn is
the filling radius of its Kuratowski embedding into L∞(X) (Recall that the
Kuratowski embedding assigns to each x ∈ Xn the distance function to x.
See a more formal and detailed definition of the filling radius below in the
next section).

In this paper we will prove the following theorems:

Theorem 1.3 Let Mn be a closed Riemannian manifold of dimension n
with the trivial first homology group. Then the smallest area A(Mn) of a
possibly singular minimal surface in Mn satisfies the following inequalities:

(1)A(Mn) ≤
(n + 1)!

2
FH(2d(Mn));

(2)A(Mn) ≤
(n + 2)!

6
FH(6FillRad(Mn));

(3)A(Mn) ≤
(n + 1)!

6
FH(6(n + 1)nn

√

(n + 1)!vol(Mn)
1

n ).

Here d(Mn) denotes the diameter, FillRad(Mn) denotes the filling radius,
and vol(Mn) denotes the volume of Mn. If n = 3, then there exists a non-
singular embedded minimal surface such that its area satifies the inequalities
(1)-(3).

Formally speaking, “possibly singular minimal surface” means here “2-
dimensional stationary integral varifold”. More generally:

Theorem 1.4 Let Mn be a closed Riemannian manifold of dimension n
with H1(M

n) = H2(M
n) = ... = Hk−1(M

n) = {0}. Then for each k ≥ 2
there exists a non-trivial stationary integral varifold of dimension k, such
that its mass Vk is bounded from above by

(1)Vk ≤
(n + 1)!

k!
FHk(k(FHk−1(...(3FH2(2d))...))).

(2)Vk ≤
(n + 2)!

(k + 1)!
FHk((k + 1)FHk−1(...(4FH2(6FillRadMn))...)).

(3)Vk ≤
(n + 2)!

(k + 1)!
FHk((k+1)FHk−1(...(4FH2(6(n+1)nn

√

(n + 1)!vol(Mn)
1

n )...))).
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If k = n − 1 and n ≤ 7 then we can ensure that a non-trivial stationary
integral varifold satisfying the inequalities (1)-(3) is a smooth embedded hy-
persurface; if k = n − 1 and n = 8, then we can ensure that it has only
isolated singularities, if k = n − 1 and n ≥ 9 we can ensure that the Haus-
dorff dimension of its singular set does not exceed k − 7.

Remarks.
1. The third inequalities in Theorems 1.3, 1.4 follow from the second in-
equalities and the above mentioned upper bound for the filling radius in
terms of volume proven by M. Gromov, [Gr].
2. Theorems 1.3, 1.4 provide effective versions of the results by J. Pitts [P],
Theorems 4.10, 4.11. Therefore our proofs provide the existence not merely
stationary integral varifolds with volume ounded as stated in Theorems 1.3,
1.4 but stationary integral varifolds that are almost minimizing in a small
annular neighborhood of every point precisely as in Theorems 4.10, 4.11 in
[P]. (See 3.1(2) of [P] for the definition of almost minimizing varifolds.) In
particular, our stationary varifolds are stable in a neighborhood of every
point but finitely many, and the cardinality of the set of points, where
stability is not guaranteed does not exceed some N(n) depending only on
the dimension of Mn.
3. In view of the last assertion of Theorem 1.3 one can ask for an upper
bound of the smallest area of am embedded non-singular minimal hypersur-
face diffeomorphic to S2 in a three-dimensional Riemannian manifold diffeo-
morphic to S3. The existence of such a surface was proven by F. Smith and
L. Simon ([S], see also [CD]). In [NR2] we obtained explicit upper bounds
for the area of such a surface. These estimates are given in terms of an
upper bound for the diameter of M 3, a positive lower bound for its volume
and a two-sided bound for the sectional curvature. The methods of [NR2]
have very little in common with the methods of the present paper.

2 Ideas of the proofs

This paper extends our earlier paper, (see [NR1]) in which we have found
two curvature-free upper bounds for the minimal length of a strongly sta-
tionary 1-cycle. Strongly stationary 1-cycle can be considered as homologi-
cal equivalents of closed geodesics and also as especially nice 1-dimensional
equivalents of minimal surfaces with singularities. The proofs in the present
paper generalize the proofs in [NR1]. Also they heavily use the results of J.
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Pitts ([P]), and can be regarded as a quantitative version of his work. First
we will present an informal explanation of the proof of the first estimate of
Theorem 1.3.

For the sake of simplicity of the explanation assume that M is diffeo-
morphic to a round 3-sphere S3. We are going to show that there exists
a minimal imbedded surface in S3 of area satisfying the upper bounds of
Theorem 1.3

Let f : S3 −→ M be any diffeomorphism. Assume S3 was triangulated
into simplices of diameter smaller than δ. Let the standard 4-disc D4 be
triangulated as a cone over S3. A k-simplex [vi0 , ..., vik ] of D4 will be denoted
σk

i , (or sometimes σk
i0,...,ik

), where k ∈ {1, 2, 3, 4}.

The proof will be by contradiction. Suppose A(M) > 12FH(2d+δ)+5δ.
We will show that in that case there exists a singular chain, such that f∗([S

3])
bounds. Here [S3] denotes the fundamental class of S3. This trick is based
on the obstruction technique first used in the paper [Gr].
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Figure 1: Table 1.

We will begin by extending the map f : S3 −→ M to 1-skeleton of M
and then by assigning to each 2-simplex of D4 a singular 2-chain on M , (see
fig. 1). To extend to 0-skeleton, we will assign to the center of the disc
p, an arbitrary point p̃ ∈ M . Next we extend to 1-skeleton by assigning
to each arbitrary edge [p, vi1 ] connecting the center of D4 with a vertex vi1
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and directed from p to vi1 , a minimal geodesic that connects p̃ with a vertex
ṽi1 = f(vi1), directed from p̃ to ṽi1 and denoted [p̃, ṽi1 ]. Now, consider a
simplex σ2

i = [vi0 , vi1 , vi2 ], where vi0 = p. Its boundary is mapped to the
curve [ṽi1 , ṽi2 ]− [ṽi0 , ṽi1 ]+[ṽi0 , ṽi1 ] of length ≤ 2d+δ. Let s2

i (also denoted as
s2
i0,i1,i2

) be a singular 2-chain of the smallest area, such that ∂s2
i = f(∂σ2

i ).
Then its area is ≤ FH(2d + δ). We will assign to σ2

i this surface s2
i .

Now we will slightly change our tactics. Consider a 3-simplex σ3
i . There

is a preassigned chain S2
i = Σ3

j=0(−1)js2
i0,...,̂ij ,...,i3

of area ≤ 3FH(2d+ δ)+ δ

that corresponds to the boundary of this simplex. (We can assume without
loss of generality that the area of s2

i1,i2,i3
≤ δ). S2

i is an element in the
space of integral 2-cycles Z2(M

n,Z). Since by our assumption there are no
minimal surfaces of “small” area, S2

i can be connected with the zero cycle
by a curve that passes through cycles of area ≤ 3FH(2d + δ) + δ, i. e.
there exists h1

i : [0, 1] −→ Z2(M,Z), (sometimes denoted h1
i0,i1,i3

), such that
h1

i (0) = S2
i and h1

i (1) is the 0-cycle. We will assign the above path to the
simplex σ3

i . Finally, take a 4-simplex σ4
i , (see fig. 2). Consider its boundary

∂σ4
i = Σ4

j=0(−1)j [vi0 , ..., v̂ij , ..., vi4 ]. Each of its faces (−1)j [vi0 , ..., v̂ij , ..., vi4 ]

corresponds to the map (−1)jh1
i0,...,̂ij ,...,i4

(t), where −h1
i0,...,̂ij ,...,i4

(t) is a cycle

that is geometrically the same as h1
i0,...,̂ij ,...,i4

(t), but is oppositely oriented.
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Figure 2: The loop f 1
i (t).

Now we will perform the trick that we will use throughout
the paper. Consider the map f 1

i : [0, 1] −→ Z2(M,Z), such that f 1
i (t) =

Σ4
j=0(−1)jhi0,...,̂ij ,...,i4

(1−t). Note that f 1
i (0) is the zero cycle and that f 1

i (1)

is also the zero cycle represented by 10 pairs of singular chains, where each
pair contains two copies of one chain with opposite orientations. Thus, f 1

i (t)
is a loop in the space of 2-cycles. Note also that the area of f 1

i (t) is bounded
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from above by 12FH(2d + δ) + 5δ. By our assumption f 1
i (t) is contractible

in Z2(M,Z) along the cycles of area ≤ 12FH(2d + δ) + 5δ. (Otherwise the
proof of Theorem 4.10 in [P] implies the existence of a minimal surface (=a
stationary integral varifold) of area ≤ 12FH(2d+δ)+5δ, which is impossible
because of our assumption.) Thus, we obtain a disc h2

i : D2 −→ Z2(M,Z).
We will assign this disc to the simplex σ4

i .
From the geometric measure theory we know that

πk(Z2(M,Z)) = Hk+2(M).

So, the disc of the form h2
i : D2 −→ Z2(M,Z) corresponds to a singular

chain s4
i on M . (However the construction of the correspondence is technical.

Our intention to avoid the technicalities of this construction is responsible
for the fact that the proofs of Theorems 1.3 and 1.4 given in the next
sections are more awkward than this sketch). Now consider S4 = ΣQ

i=1s
4
i ,

where Q is the number of simplices of dimension 4 in the triangulation of
D4. ∂S4 = f∗([S

3]). Thus, we obtain a contadiction. Therefore, we can
conclude that A(M) ≤ 12FH(2d + δ) + 5δ. Now let δ go to zero.

The proof of Theorem 1.3 will be given in Section 2. The proof of
Theorem 1.4 will be given in Section 3. Section 1 will be devoted to the dis-
cussion of the regularity of minimal surfaces the area of which we estimate.
As we have mentioned before the arguments of the proofs will be somewhat
more technical than the explanations above, and will run as follows.

Once again, for the sake of simplicity of the explanation, assume that our
manifold M is diffeomorphic to the standard 3-sphere. Let f : S3 −→ M be
a diffeomorphism, and suppose that the triangulation of S3 and the induced
triangulation on M is very fine, (i.e. the diameter of simplices smaller than
δ). Let D4 be triangulated as a cone over S3.

The proof will consist of the following three steps:
Step 1 (Easy). Corresponding to the map f : S3 −→ M one can construct
a non-contractible map f̃ : S1 −→ Z2(M,Z), a loop in the space of the
integral 2-cycles on a manifold M . We do not have any control over the
masses of f(t), t ∈ S1.
Step 2 (Main Step). The loop f̃ is homotopic to the sum of Q loops g̃i,
where the number Q equals to the number of simplices in the triangulation
of S3, and the masses of all 2-cycles g̃i(t), t ∈ S1 satisfy upper bounds as in
the right hand side of the inequality (1) in the text of Theorem 1.3.
Step 3 (An application of [P]). We show that if there is no minimal
surface with “small” area than each loop in step 2 can be contracted to a
point, thus obtaining a contradiction.
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Figure 3: The loop f̃ .

Step 1. Let {σ3
i }

Q
i=1 be the set of simplices that constitute the funda-

mental class [S3] of S3. Then {σ̃3
i }

Q
i=1 are the corresponding simplices of

M .

Without any loss of generality we can assume that each σ̃3
i can be ob-

tained from its boundary ∂σ̃3
i by contracting it to the “center” of the simplex,

the point p̃i by a homotopy h̃i : [0, 1] −→ M along the 2-spheres h̃i(t), (see
fig. 3 (a). This figure schematically depicts σ̃3

i as a simplex of dimension
2).

Then f̃ can be constructed as follows. We will begin with the zero cycle
that consists of the sum of the “centers” of simplices: ΣQ

i=1p̃i. We will then
follow the images of ∂σ̃3

i ’s under the area decreasing homotopies h̃i(t)’s, that

is f̃(t) = ΣQ
i=1h̃i(1 − t). Note that f̃(1) = ΣQ

i=1∂σ̃3
i , which is also the zero

cycle. Thus, we obtain a (non-contractible) loop in the space of 2-cycles,
(see fig. 3 (b). There f(S3) is schematically depicted as a 2-dimensional
sphere).

Step 2. Each loop g̃i is constructed as follows. Consider a disc D4, such
that ∂D4 = S3, triangulated as a cone over S3. Let p ∈ D4 be the center
of this disc. We can assign to this point an arbitrary point p̃ ∈ M , thus ex-
tending the map f : S3 −→ M to the 0-skeleton of D4. Next consider a line
segment of the form [p, vi] directed from p to vi. We can assign to it a mini-
mal geodesic segment of length smaller than the diameter d of M joining the
point p̃ with the vertex ṽi = f(vi). This segment will be directed from p̃ to ṽi

and denoted as [p̃, ṽi]. This extends f to 1-skeleton of D4. Next consider a 2-
simplex σ2

i = [p, vi1 , vi2 ], (it will sometimes be denoted as σ2
i0,i1,i2

. Its bound-
ary is mapped to a closed curve [ṽi1 , ṽi2 ]− [p̃, ṽi2 ]+[p̃, ṽi1 ]. Let s2

i (sometimes
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i
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denoted as s2
i0,i1,i2

) be a singular 2-chain of the smallest area filling this curve.
We can assign s2

i to simplex σ2
i , thus we obtain a map from the 2-skeleton of

D4 to the space of integral 2-currents. Now let us take an arbitrary 3-simplex
σ3

i = [p, vi1 , vi2 , vi3 ]. Its boundary ∂σ3
i =

∑3
j=0(−1)j [vi0 , ..., v̂ij , ..., vi3 ],

where vi0 = p. For each face (−1)j [vi0 , ..., v̂ij , ..., vi3 ] we have pre-assigned
a singular 2-chain (−1)js2

i0,...,̂ij ,...,i3
. Consider Σ3

j=0(−1)js2
i0,...,̂ij ,...,i3

. This is

a 2-cycle of area smaller than 3FH(2d + δ) + δ, (without loss of generality
we can assume that the area of s2

i1,i2,i3
is smaller than δ). Thus, it is an

element in Z2(M,Z). Assuming there is no minimal 2-cycle that locally
minimizes the area of area smaller than that, this cycle can be connected
with the zero cycle, that is there exists a map h1

i0,...,i3
: [0, 1] −→ Z2(M,Z)

that begins with our cycle and ends with the zero cycle. Finally, let
us construct g̃i. Consider a 4-simplex σ4

i = [vi0 , vi1 , ..., vi4 ]. Its bound-
ary, ∂σ4

i = Σ4
j=1(−1)j [p, vi1 , ..., v̂ij , ..., vi4 ]. For each face in the boundary

(−1)j [vi0 , vi1 , ..., v̂ij , ..., vi4 ] there was constructed a map (−1)jh3
i0,...,̂ij ,...,i4

:

[0, 1] −→ Z2(M,Z), where −h(t) is the same cycle as h(t), but taken
with an opposite orientation. We will define the map g̃i(t) as the sum
Σ4

j=0(−1)jh1
i0,...,̂ij ,...,i4

(1− t). Note that g̃i(0) is the zero cycle represented by

p̃i0,...,̂ij ,...,i4
and that g̃i(1) is also the zero cycle, because of the cancellations

due to the fact that each surface that corresponds to a 2-dimensional face
of the simplex σ4

i enters twice with the opposite orientation. Thus, g̃i(t) is a
loop. Area of g̃i(t) is bounded from above by 12FH(2d+ δ)+5δ. Moreover,
f̃(t) is homotopic to the sum of the above loops.

Step 3. Since f̃(t) is homotopic to the sum of the loops g̃i, (see fig.
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4), at least one of those loops in not contractible. Therefore, if we try
to contract it using a mass decreasing flow described in ch. 4 of [P] (and
introduced earlier by F. Almgren), it should get stuck on a critical point,
which, as it was shown by J. Pitts in chapter 4 of [P] would be a stationary
integral varifold. In ch. 7 of [P] J. Pitts uses the results of [SSY] imply that
in the three-dimensional case this stationary varifold will turn out to be an
embbedded minimal surface.

Similarly, one can show that A(Mn) ≤ (n+2)!
6 FH(6FillRad(Mn)). Re-

call that the filling radius of a Riemannian manifold Mn was introduced by
Gromov in [Gr] as follows:

Definition 2.1 (Filling Radius) Let Mn be a Riemannian manifold topo-
logicaly imbedded into an arbitrary metric space X. Then its filling radius,
denoted FillRad(Mn ⊂ X), is the infimum of ε > 0, such that Mn bounds
in the ε- neighborhood Nε(M

n), i.e. homomorphism Hn(Mn,Z2) −→
Hn(Nε(M

n),Z2) induced by the inclusion map vanishes. Let Mn be an
abstract manifold. Then its filling radius, denoted FillRad(Mn) will be
FillRad(Mn ⊂ X), where X = L∞(Mn), i.e. the Banach space of bounded
Borel functions f on Mn and the imbedding of Mn into X is the map that
assigns to each point p of Mn the distance function p −→ fp = d(p, q).

In the same paper Gromov poved the following important inequality
relating the filling radius and the volume:

Theorem 2.2 ((M. Gromov))

FillRad(Mn) ≤
√

(n + 1)!nn(n + 1)vol(Mn)
1

n .

Now, suppose once again that Mn is diffeomorphic to S3. The definition
of the Filling Radius implies that Mn bounds in the (FillRad(Mn) + δ) -
neighborhood of Mn in L∞(Mn). Let W fill Mn in the (FillRad(Mn)+ δ)-
neighborhood of M , (that is Mn = ∂W ). Without loss of generality we
can assume that W is a polyhedron. Suppose that W together with Mn is
endowed with a very fine triangulation. As in (i) the proof will consist of
the three steps: constructing a non-contractible loop f̃ : S1 −→ Z2(M

n,Z);
constructing a family of loops g̃i : S1 −→ Z2(M

n,Z); concluding that one of
those loops must be non-contractible, and therefore there exists an almost
minimizing integral varifold of area smaller than the area of integral cycles
through which this loop passes.
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Step 1. The first step is analogous to that of (i).

Step 2. Let vi be a vertex of W . Assign to it a closest vertex in Mn,
denoted ṽi. Thus, d(vi, ṽi) ≤ FillRad(Mn) + δ. This extends the identity
map Id : 2004 − 006.tex, v1.12004/05/2717 : 35 : 19levyExplevy on M n to
0-skeleton of W . Now to any 1-simplex [vi1 , vi2 ] ⊂ W \ Mn we can assign
a minimal geodesic segment connecting ṽi1 and ṽi2 of length smaller than
2FillRad(Mn)+3δ. This segment will be denoted as [ṽi1 , ṽi2 ]. This extends
Id : 2004 − 006.tex, v1.12004/05/2717 : 35 : 19levyExplevy to 1-skeleton of
Mn. Next consider an arbitrary 2-simplex σ3

i = [vi1 , vi2 , vi3 ]. Its boundary
is mapped to a curve of length smaller than 6FillRad(Mn)+9δ. Let s2

i1,i2,i3

be a singular 2-chain of the smallest area that has this curve as its boundary.
Its area is going to be smaller than FH(6FillRad(Mn) + 9δ). The rest of
the procedure (including Step 3) is the same as in the proof of (1).

3 The proof of Theorem 1.3

In this section we will prove 1.3. We will begin by proving statements (i)
and (ii). Statement (iii) follows from (ii).

Proof. We are going to prove the theorem by contradiction. Assume that
there is no stationary integral varifold as in the text of the theorem and then
prove that it exists.

Suppose Mn is a (q − 1)-connected manifold with πq(M
n) 6= {0}. Let

f : Sq −→ Mn be a non-contractible map in case (i), and in case (ii)
chooser a (singular) W that fills M (in L∞(Mn)) such that for each x ∈

W dist(x,Mn) ≤ (n + 1)nn
√

(n + 1)!vol(Mn)
1

n . (As it had been already
mentioned, in [Gr] M. Gromov proved that such a filling exists.) Let Sq be
triangulated into simplices σq

i of diameter d(σq
i ) ≤ δ for some small δ in case

(i). In case (ii) assume that W (and Mn = ∂W ) has been triangulated into
simplices σn

i of diameter at most δ. In both cases let Q denote the number
of simplices. The proof will consist of three steps:

Step 1. We will begin by constructing a non-contractible map f̃ : Sq−2 −→
Z2(M

n,Z) in case (i) that corresponds to the original map f : Sq −→ Mn

under the Almgren correspondance in case (i) and the map f̃ : Sn−2 −→
Z2(M

n,Z) that corresponds to the fundamental class of Mn in case (ii).

Step 2. We will construct maps g̃i from Sq−2 in case (i) and from Sn−2

in case (ii) to the space Z2(M
n,Z), i ∈ {1, ..., Q}, where Q is a number of

simplices of dimension (q + 1) in the triangulation of D(q+1) in case (i) and
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it is a number of simplices of dimension (n+1) in the triangulation of W in
case (ii). It will turn out that f̃ is homotopic to the sum of g̃′is. Therefore,
at least one of the maps g̃′is is not contractible. The most important feature
of g̃i is that the mass of g̃i(t) does not exceed the right hand side of (1) (or
(2)) for every t, i.

Step 3. We can conclude that there exists an almost minimizing integral
varifold of area smaller than that of the cycles through which passes the
non-contractible map of Step 2.

Step 1. Let us begin by considering simplices σ̃3
i = [ṽi0 , ..., ṽi3 ] of di-

mension 3, (we will sometimes denote it as σ̃3
i0,...,i3

, in general, k-simplices

will be sometimes denoted as σ̃k
i0,...,ik

). Without loss of generality we can
assume that this simplex can be generated by contracting its boundary ∂σ̃3

i

to the “center” of the simplex p̃3
i , (sometimes denoted p̃i0,...,i3 ) with a homo-

topy h̃1
i (t) = h̃1

i0,...,i3
. This homotopy can be chosen, for example, to be the

radial homotopy of the boundary of the (very small and, therefore, almost
Euclidean) simplex to its center. Note that we can consider this homotopy
as a path in the space of integral 2-cycles that starts with the boundary of a
simplex and ends with the zero cycle. Next consider a 4-dimensional simplex
σ̃4

i = [ṽi0 , ..., ṽi4 ]. Its boundary ∂σ̃4
i = Σ4

j=0(−1)j [ṽi0 , ..., ˆ̃vij , ..., ṽi4 ]. For each

3-face (−1)j [ṽi0 , ..., ˆ̃vij , ..., ṽi4 ] we have constructed a path (−1)j h̃1
i0,...,̂ij ,...,i4

:

[0, 1] −→ Z2(M
n,Z). Now, let us construct a map f̃1

i : [0, 1] −→ Z2(M
n,Z)

as follows: let f̃1
i (t) = Σ4

j=0(−1)j h̃1
i0,...,̂ij ,...,i4

(1 − t). Then, note that f̃1
i (0)

is the zero cycle that corresponds to the sum of the “centers” of the 3-faces
of σ̃4

i and that f̃1
i (0) is also the zero cycle due to the cancellation of each

pair of the two faces, that have the same geometric image, but are taken
with the opposite orientation. Thus, this map is really a “small” loop in
the space of the integral 2-cycles. We can contract it there and obtain a
“small” disc h̃2

i : D2 −→ Z2(M
n,Z), (this map will also be sometimes de-

noted as h̃2
i0,...,i4

). Geometrically, this discs corresponds to the considered
4-dimensional simplex regarded as the chain filling its boundary. The con-
struction of this disc can be made absolutely explicit: It is just a slicing of
the simplex into 2-surfaces that extends the slicing of its boundary. It can
be obtained just by coning of the slicing of the boundary. Now we can just
proceed by induction until we will get a slicing of each q-dimensional singular
simplex of Mn obtained from f and the considered very fine triangulation
of Sq (case (i)) or n-dimensional simplex of Mn (case (ii)). As the result,
we obtain maps h̃q

i of Dq−2 into Z2(M,Z) (or h̃n
i of Dn−2 into Z2(M

n,Z),
where the mass of each 2-cycle in the image of each of these maps can be
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made arbitrarily small.

We finish by defining the map f̃ as the sum of those maps over all
simplices in the triangulation. Note that this map turns out to be a map
from the (q − 2)- (Case (i)) or (n− 2)- (Case (ii)) dimensional sphere. Note
that by doing so we lose any control over the mass of 2-cycles in the image
of f .

Step 2. We will now construct maps g̃is, such that f̃ = ΣQ
i=1g̃i. The

beginning of procedure of constructing those maps is somewhat different for
case (i) and for case (ii).

Case (i). Take a point p, the center of the disc Dq+1, which has been
triangulated as a cone over Sq. Assign to this point an arbitrary point
in a manifold, that will be denoted p̃. Note that this extends the map f
to 0-skeleton of Dq+1. Next consider an edge of the form [p, vi]. We will
assign to it a minimal geodesic segment [p̃, ṽi] joining the point p̃ with the
corresponding vertex ṽi = f(vi). This extends the map f to 1-skeleton of
Dq+1.

Case (ii). Let vi be an arbitrary vertex of W . Let ṽi be a vertex
of Mn that minimizes the distance between vi and Mn. Then d(vi, ṽi) ≤
FillRadMn +δ. We will assign ṽi to the vertex vi. This extends the identity
map Id : Mn −→ Mn to W . Now consider an arbitrary edge of W of the
form [vi, vj ]. We can assign to this edge a minimal geodesic segment joining
the corresponding vertices ṽi and ṽj . It will be denoted [ṽi, ṽj ]. This segment
will have the length of at most 2FillRadMn + 3δ.

The rest of the procedure will be the same in the two cases. Consider an
arbitrary 2-simplex of the form σ2

i = [vi0 , vi1 , vi2 ] of Dq+1, where (vi0 denotes
here and later the center of the disc p) in Case (i). Its boundary is mapped
to a closed curve of length at most 2d + δ in Case (i) (of 6FillRadM n + 9δ
in Case (ii)). Let s2

i = s2
i0,i1,i2

be a singular surface (=singular 2-chain) of
area smaller than FH(2d + δ) in Case (i) (FH(6FillRadMn + 6δ) in Case
(ii)). We will assign this surface to the simplex σ2

i .

Next consider a 3-simplex σ3
i = [vi0 , ..., vi3 ]. Its boundary corresponds

to the singular surface Σ3
j=0(−1)jsi0,...̂ij ,...,i3

. Its area is ≤ 3FH(2d + δ) + δ̃,

(since we can assume that all simplices of f(Sq) are small) in Case (i) (≤
4FH(6FillRadMn + 6δ) in Case (ii)). This surface can be considered as an
element in the space of integral 2-cycles on Mn. Now, either there exists
a minimal 2-cycle that locally minimize the mass of non-zero mass smaller
than that of this surface, or this surface, viewed as a point in Z2(M

n,Z)
can be connected with the zero cycle with a path h1

i : [0, 1] −→ Z2(M
n,Z).
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Here we are using the proof of Theorem 4.10 in [P]. This theorem does
notamention the mass of the stationary varifold but its proof implies that
the mass does not exceed the maximal mass of cycles in the image of the
considered map of the sphere.)

Therefore, we can establish a correspondence between the 3- simplices
and the above maps.

Now consider a 4-simplex σ4
i = [vi0 , ..., vi4 ]. For each face

(−1)j [vi0 , ...., v̂ij , ...., vi4 ] there was preassigned a map (−1)jh1
i0,...,̂ij ,...,i4

:

[0, 1] −→ Z2(M
n,Z). Now, let f1

i (t) = Σ1
j=0(−1)jh1

i0,...,̂ij ,...,i4
(1 − t). Each

f1
i (t) is an integral 2-cycle of area ≤ 4 · 3FH(2d + δ) + 2δ in Case (i) (
≤ 5 · 4FH(6FillRadMn + 9δ)). Note that fi(0) is the zero cycle and that
fi(1) is also the zero cycle due to the cancellations of the pairs of surfaces
that enter with the opposite orientation. Thus, in reality, f 1

i (t) is a loop in
the space of the integral 2-cycles. Since we have assumed that there are no
almost minimizing integral varifolds of “small” area the map f 1

i (t) is con-
tractible over the disc h2

i (s). Therefore, we can assign this map of the disc
to a 4-simplex σ4

i .

Now suppose that for each simplex of dimension k we have constructed
the corresponding map hk−2

i : Dk−2 −→ Z2(M
n,Z). Let us consider an

arbitrary (k+1)-simplex σk
i = [vi0 , ..., vik+1

]. Consider a face in the boundary
of this simplex (−1)j [vi0 , ..., v̂ij , ..., vik+1

]. To this face there corresponds a

map hk−2
i0,....,̂ij ,...,ik+1

: Dk−2 −→ Z2(M
n,Z). Now consider a map fk−2

i :

Dk−2 −→ Z2(M
n,Z), such that fk−2

i (r, θ) = Σk+1
j=0(−1)jhk−2

i0,....,̂ij ,...,ik+1

(1 −

r, θ). Note that fk−2
i (1, θ) is the zero cycle. Therefore, in reality this map

is a map from Sk−2 to the space of cycles. By our assumption this map is
contractible, thus we obtain hk−1

i : Dk−1 −→ Z2(M
n,Z). We will assign

this map to simplex σk−1
i .

We will continue in the above manner until we construct maps f q−2
i in

Case (i) and maps fn−2
i s in Case (ii). We will call these maps g̃i. The sum

of these maps is homotopic to the map f constructed in Step 1.

Step 3. We can conlude that one of the maps f̃i is not contractible.
Therefore, another application of Theorem 4.10 of [P] (or, more precisely, of
its proof) implies that there exists a non-trivial stationary integral varifold
with the mass as claimed in Theorem 1.3.

If n = 3, then the regularity assertion follows from Theorem 7.12 in [P].

2
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4 Proof of Theorem 1.4

The proof is similar to that of Theorem 1.3.

Proof. The proof is by contradiction. We will assume that there is no
stationary varifold as in Theorem 1.4. As in the 1.3 we are going to discuss
cases (i) and (ii) at the same time. Theorem will be proved in three steps.
Step 1. Let f : Sq −→ Mn be a non-contractible map in Case (i) and let
Id : 2004 − 006.tex, v1.12004/05/2717 : 35 : 19levyExplevy be the identity
map in Case (ii). We are going to construct a non-contractible map f̃ :
Sq−k −→ Zk(M

n,Z) in Case (i) and the map f̃ : Sn−k −→ Zk(M
n,Z) in

Case (ii). (Here and below Zk(M
n,Z) denotes the space of integral k-cycles

on Mn.)
Step 2. We will construct maps g̃i from Sq−k (or Sn−k) to the space of k-
dimensional cycles on Mn, such that the map f̃ of Step 1 will be homotopic
to their sum. The masses of k-cycles g̃i(t) do not exceed the right hand side
in the inequality (i) (or (ii)) in Theorem 1.4.
Step 3. We will conclude that, one of the maps g̃i constructed on Step 2 is
not contractible, and therefore the results of J. Pitts imply the existence of
a stationary varifold as in Theorem 1.4 thereby obtaining a contradiction.

Here is a detailed description of the first two steps of the proof.
Step 1. Consider an arbitrary simplex σ̃k+1

i = ṽi0 , ..., ṽik+1
], (in general

an arbitrary simplex of dimension l will be sometimes denoted as σl
i0,...,il

to keep track of the vertices that generate it). This simplex lies in the
(k + 1)-skeleton of f(Sq) in Case (i) and in the (k + 1)-skeleton of Mn in
Case (ii). Without any loss of generality we can assume that this simplex
is generated by a volume decreasing homotopy h̃1

i : [0, 1] −→ Zk(M
n,Z)

that connects its boundary with a point p̃k+1
i , (the homotopy will be some-

times denoted as h̃1
i0,...,ik+1

, and the point will be sometimes denoted as

p̃k+1
i0,...,ik+1

). We can define a correspondence between σ̃k+1
i and the map

h1
i . Now consider a (k + 2)-dimensional simplex σ̃

(k+2)
i = [ṽi0 , ..., ṽik+2

].

Each face (−1)j [ṽi0 , ..., ˆ̃vij , ..., ṽik+2
] of its boundary corresponds to the map

(−1)j h̃1
i0,...,̂ij ,...,ik+2

. Define a new map f̃1
i : [0, 1] −→ Zk(M

n,Z) by letting

f̃1
i (t) = Σk+2

j=0(−1)j h̃1
i0,...,̂ij ,...,ik+2

(1 − t). Note that f̃1
i (0) = f̃1

i (1) and is the

zero cycle, thus the newly constructed map is a loop in the space of k-cycles.
Since all the simplices in the triangulation of Sq or M are small, this loop
is contractible. The contraction amounts to slicing the (k + 2)-dimensional
simplex into k-cycles, so that this slicing extends the slicing of the boundary.
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(It can be explicitly defined using a coning of the slicing of the boundary.)
That allows us to obtain a disc h̃2

i : D2 −→ Zk(M
n,Z), and so we can define

a correspondence between simplex σ̃k+2
i and the map h̃2

i .

Now suppose we have constructed maps h̃l−k
i : Dl−k −→ Zk(M

n,Z)
that correspond to l-dimensional simplices σ̃l

i. Consider an arbitrary (l+1)-
dimensional simplex σ̃l+1

i = [ṽi0 , ..., ṽil+1
]. Define the map f̃ l−k

i : Dl−k −→

Zk(M
n,Z) by letting f̃ l−k

i (r, θ) = Σl+1
j=0(−1)j h̃l−k

i0,...,̂ij ,...,il+1

(1 − r, θ). This

map corresponds to the boundary of σ̃l+1
i . Note that f̃ l−k

i (1, θ) is the
zero cycle, and thus it is a map from the (l − k)-dimensional sphere to
the space of integral k-cycles. This sphere is contractible over the disc
h̃l+1−k

i : Dl+1−k −→ Zk(M
n,Z) in the space of “small” integral k-cycles.

This contraction amounts to extending the slicing of the boundary of the
considered (l + 1)-dimensional simplex to its interior, and can be explicitly
constructed just by the coning. We continue in the above manner until we
construct the maps h̃q−k

i s in case (i) and the maps h̃n−k
i s in case (ii). Take

the sum of those maps over all the simplices in the triangulation to obtain
sphere f̃ : Sq−k −→ Zk(M

n,Z) in the space of integral k-cycles in Case (i)
and f̃ : Sn−k −→ Zk(M

n,Z) in Case (ii).

Step 2. (The main step.) We will begin by extending the map
f : Sq −→ Mn to the 2-skeleton of D3 (Case (i)) or by extending the
map Id : 2004 − 006.tex, v1.12004/05/2717 : 35 : 19levyExplevy to the 1-
skeleton of W (Case (ii)). In both of those cases the procedure is identical
to that of Step 2 in the proof of Theorem 1.3. After that we will establish a
correspondence between simplices σl

i, where 2 ≤ l ≤ k and singular chains of
the corresponding dimension on Mn. Let us consider an arbitrary 2-simplex
σ2

i = [vi0 , vi1 , vi2 ]. Its boundary is mapped to a curve of length ≤ 2d + δ
(Case (i)) or of length ≤ 6FillRadMn +9δ (Case (ii)). In the future we will
denote it lc.

Let s2
i be a singular surface of smallest area that has this curve as its

boundary. We will assign this surface to this simplex. The area of this sur-
face will be ≤ FH2(lc). Now consider an arbitrary 3-simplex σ3

i . Its bound-
ary is assigned a 2-cycle S2

i = Σ3
j=0(−1)js2

i0,..,̂ij ,...,i3
of area ≤ 3FH2(lc) + δ

in Case (i) and of area ≤ 4FH2(lc) in Case (ii). Let s3
i be a singular 3-

chain of smallest area that has S2
i as its boundary. Its volume is at most

FH3(3FH2(lc)+δ) in case (i) and at most FH3(4FH2(lc)) in case (ii). Next
suppose that for each arbitrary simplex σl

i, where l ≤ k − 1 we have con-
structed a chain sl

i of volume ≤ FHl(lFHl−1((l− 1)FHl−2(.....) + δ) + δ) in
Case (i) and ≤ FHl((l +1)FHl−1(lFHl−2((l− 1)...))) in Case (ii). Consider
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an arbitrary (l+1)-simplex σl
i. For each face (−1)j [vi0 , ..., v̂ij , ..., vil+1

] in its
boundary there exists a preassigned singular chain (−1)jsi0,...,̂ij ,...,il+1

. Con-

sider a cycle Sl
i = Σl+1

j=0(−1)jsi0,...,̂ij ,...,il+1
. Find a singular (l + 1)-chain of

sl+1
i , such that ∂sl+1

i = Sl
i. This chain will be assigned to σl

i. We should con-
tinue in the above manner until we reach the k-skeleton of Dq or respectively
of W .

Now consider an arbitrary (k +1)-simplex σk+1
i . Each face in its bound-

ary (−1)j [vi0,...,̂ij ,...,ik+1
] corresponds to the singular chain (−1)jsi0,...,îj ,...,ik+1

.

Consider the following cycle Sk+1
i = Σk+1

j+0(−1)jsi0,...,̂ij ,...,ik+1
. This is an ele-

ment of Zk(M
n,Z) of volume ≤ (k + 1)FHk(kFHk−1((k − 1)...) + δ) + δ in

Case (i) and of volume ≤ (k+2)FHk((k+1)FHk1
(k...)). By our assumption

this cycle can be connected with the zero cycle with a path that will only
pass through the cycles of smaller volume. Let us denote this path by h1

i :
[0, 1] −→ Zk(M

n,Z). We will assign this path to the above simplex σk+1
i .

Now suppose we have constructed the maps hl−k
i : Dl−k −→ Zk(M

n,Z)
corresponding to simplices σl

i, where l ≤ q − 1 in Case (i) and ≤ n − 1 in
Case (ii). Consider an arbitrary (l + 1)-dimensional simplex σl+1

i . Each
face (−1)j [vi0 , ..., v̂ij , ..., vil+1

] corresponds to a map (−1)jhl−k

i0,...,̂ij ,...,il+1

(r, θ).

Define a new map fk−l
i (r, θ) = Σl+1

j=0(−1)jhl−k

i0,...,̂ij ,...,il+1

(1 − r, θ). Note that

f(1, θ) is the zero cycle, and thus, this is a map from S l−k to the space of
k-cycles. By our assumption this map is contractible and this is how we
obtain hl−k+1

i : Dl−k+1 −→ Zk(M
n,Z). We continue in the above manner

until we construct maps f q−k
i in case (i) or the maps fn−k

i in case (ii). Those
are our maps g̃′is. Note that f̃ is homotopic to their sum.
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