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Abstract. We study the topology of the boundary manifold of a regular neigh-
borhood of a complex projective hypersurface. We show that, under certain Hodge
theoretic conditions, the cohomology ring of the complement of the hypersurface
functorially determines that of the boundary. When the hypersurface defines a hy-
perplane arrangement, the cohomology of the boundary is completely determined
by the combinatorics of the underlying arrangement and the ambient dimension.
We also study the LS category and topological complexity of the boundary mani-
fold, as well as the resonance varieties of its cohomology ring.

1. Introduction

1.1. Boundary manifolds. There are many ways to understand the topology of a
homogeneous polynomial f : C`+1 → C. The most direct approach is to study the
hypersurface V in CP` defined as the zero locus of f . Another approach is to view
the complement, X = CP`\V , as the primary object of study. And perhaps the most
thorough is to study the Milnor fibration f : C`+1 \ {f(x) = 0} → C∗. Of course,
the different approaches are interrelated. For example, if the degree of f is n, then
the Milnor fiber F = f−1(1) is a cyclic n-fold cover of X. Consequently, knowledge
of the cohomology groups of X with coefficients in certain local systems yields the
cohomology groups of F .

In this paper, we take a different (yet still related) tack. We consider the boundary

manifold, M , defined as the boundary of a regular neighborhood N of the subvariety
V ⊂ CP`, see Durfee [9]. Clearly, X ' CP` \N◦, and M is the boundary of CP` \N◦.
While the complement X has the homotopy type of a CW-complex of dimension at
most `, the boundary manifold M is a smooth, compact manifold of dimension 2`−1.

There are many questions one can ask about the topology of M , for instance,
concerning its fundamental group, and how it relates to the fundamental group of
X. In the case where V is the union of an arrangement of lines in CP2, work in this
direction was done by Jiang-Yau [17], Westlund [31], and Hironaka [15]. Here, we
resolve the asphericity question for the boundary manifold of an arbitrary hyperplane
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arrangement (see Propositions 2.9 and 4.5), leaving a more detailed study of the
fundamental group and related invariants to future work.

For a general hypersurface V , our main goal in this paper is to compute the
cohomology ring of the boundary manifold M . We show that, under fairly mild
hypotheses, the cohomology ring of the complement X functorially determines the
cohomology ring of M , and derive a number of consequences. For instance, when
the hypersurface V =

⋃
H∈A H is determined by an arrangement of hyperplanes A,

these (Hodge theoretic) hypotheses are satisfied, and the cohomology of X = X(A)
is thoroughly understood, thanks to classical results of Brieskorn and Orlik-Solomon.
Our results then yield an explicit description of the cohomology ring of the boundary
manifold M = M(A).

1.2. Cohomology ring of the boundary. Given a finite-dimensional graded alge-
bra A over a ring R, we construct a new algebra, D(A). This is a particular case
of a more general construction due to Reiten [27], which associates to a ring A and
an A-bimodule B the “trivial extension” ring A n B := A ⊕ B, with multiplication
(a, b)(a′, b′) = (aa′, a·b′+b·a′). Applying this construction to a graded (commutative)

algebra A =
⊕`

k=0 Ak and the A-bimodule B = Ā =
⊕2`−1

k=`−1 Hom(A2`−k−1, R) yields

a graded (commutative) algebra D(A) = An Ā, which we refer to as the double of A.
Now if V ⊂ CP` is a projective hypersurface, then the cohomology groups (with

complex coefficients) of V , and those of the complement X = CP` \ V admit mixed
Hodge structures. For each k ≥ 0, there is an increasing weight filtration {Wm}m≤2k

of the k-th cohomology group, such that each quotient Wm/Wm−1 has pure Hodge
structure of weight m. Our main results, proved in Section 3, may be summarized as
follows.

Theorem. Let V be a hypersurface in CP`, with complement X and boundary man-

ifold M . If either V is irreducible, or the weight filtration on the top cohomology

group of X satisfies W`+1(H
`(X; C)) = 0, then the cohomology ring of the boundary

manifold is isomorphic to the double of the cohomology ring of the complement:

(1.1) H∗(M ; C) ∼= D(H∗(X; C)).

If H`(X; C) satisfies the above weight condition and the integral cohomology of
X is torsion-free, our results can be used to show that the splitting (1.1) holds over
the integers, H∗(M ; Z) ∼= D(H∗(X; Z)). On the other hand, this splitting can fail
with integral coefficients when V is irreducible (see Example 2.4). With complex
coefficients, the splitting (1.1) can fail if neither of the hypotheses stated in the
theorem holds (see below).

1.3. Arrangements and curves. When applied to a complex hyperplane arrange-
ment, our result yields an analog for the boundary manifold of a well known theorem
of Orlik and Solomon [23] concerning the cohomology ring of the complement. Sup-
pose A is an arrangement of hyperplanes in CP`, and let M(A) be its boundary
manifold. Then the integral cohomology ring H∗(M(A); Z) is determined by the
intersection poset L(A) and the ambient dimension `, see Corollary 4.2.
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For an algebraic curve V ⊂ CP2 (in particular, an arrangement of lines in CP2),
the associated boundary manifold M is a Waldhausen graph manifold. We show in
Theorem 3.5 that the “doubling” formula (1.1) holds for a reducible curve V if and
only if all its components are rational curves.

Cohomology rings of graph manifolds (with Z2 coefficients) have been the object
of substantial recent study, see Aaslepp, et.al. [1]. For those graph manifolds which
arise as boundary manifolds of arrangements of rational curves in CP2, our methods,
together with Cogolludo’s computation of the cohomology ring of the complement of
such an arrangement in [4], provide an efficient alternative.

1.4. LS category and topological complexity. Let XI be the space of continuous
paths from the unit interval to X, and let π : XI → X × X be the map sending a
path to its endpoints. In [12], Farber defines the topological complexity of X, denoted
by tc(X), to be the smallest integer k such that X×X can be covered by k open sets,
over each of which π has a section. This numerical invariant, which depends only on
the homotopy type of X, is related to the Lusternik-Schnirelmann category by the
inequalities cat(X) ≤ tc(X) ≤ 2 cat(X) − 1. Computing the topological complexity
of X is crucial to solving the motion planning problem for the space X, see [12].

The topological complexity tc(X) admits a cohomological lower bound in terms
of the zero-divisor length of H∗(X; |), similar to the well known cup-length lower
bound for cat(X). In the case when X = X(A) is the complement of a hyper-
plane arrangement, explicit computations of tc(X) were carried out by Farber and
Yuzvinsky [13]. In Section 5, we compute the topological complexity of the boundary
manifold M = M(A) for various classes of hyperplane arrangements, using our de-
scription of the cohomology ring of M and results from [12]. In particular, we show
that the difference tc(M) − cat(M) can be made arbitrarily large, see Corollary 5.7.

1.5. Resonance. We conclude with a comparison of certain ring-theoretic invariants
of the cohomology ring of the complement to those of the cohomology ring of the
boundary manifold.

Suppose A is a finite-dimensional, graded, connected algebra over an algebraically
closed field | of characteristic 0. For each a ∈ A1, multiplication by a defines a chain
complex (A, a). The resonance varieties of A are the jumping loci for the cohomology
of these complexes: Rk

d(A) = {a ∈ A1 | dim| Hk(A, a) ≥ d}.
In Section 6, we study the resonance varieties of the trivial extension, D(A) = AnĀ.

As an application, we obtain information about the structure of the resonance vari-
eties of the boundary manifold of a hyperplane arrangement A. Let A = H∗(X(A); |)
be the Orlik-Solomon algebra. It is well known that the components of the resonance
varieties Rk

d(X(A)) = Rk
d(A) are linear subspaces of A1 = |n. The behavior of

the resonance varieties Rk
d(M(A)) = Rk

d(D(A)) is dramatically different. Indeed, we
produce examples of arrangements for which the resonance varieties of the bound-
ary manifold contain singular, irreducible components of arbitrarily high degree, see
Corollary 6.6.
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2. The boundary manifold

In this section, we introduce our main character, the boundary manifold of an
(algebraic) hypersurface in complex projective space. We then compute its homology
groups in terms of those of the complement to the hypersurface, and make a remark
on the homotopy groups.

2.1. Thickenings. According to C.T.C. Wall [30], a thickening of a finite, k-dimen-
sional CW-complex Y is a compact, m-dimensional manifold with boundary Wm,
which is simply homotopy equivalent to Y . Such a thickening always exists, as soon
as m ≥ 2k + 1: Embed Y as a sub-polyhedron in Rm, and take W to be a smooth,
regular neighborhood of Y .

Let M = ∂W be the boundary of the thickening W . In general, the homotopy
type of the boundary manifold M is not determined by the homotopy type of Y . For
example, both CP2 ×Dm−4 and the normal disk bundle of CP2 ⊂ Sm are thickenings
of CP2, but their boundary manifolds are not homotopy equivalent, see Lambrechts
[20]. Nevertheless, if M is orientable, and m ≥ 2(k + 1), then the cohomology ring
H∗(M ; Z) is completely determined by H∗(Y ; Z), by Poincaré duality and degree
considerations.

2.2. Projective hypersurfaces. Let V be a hypersurface in CP`, given as the zero
locus of a homogeneous polynomial f = f(x), where x = (x0, . . . , x`) are homoge-
neous coordinates on CP`. A (closed) regular neighborhood, N , of V in CP` can be
constructed either by triangulation, or by levels sets. In the first approach, triangu-
late CP` with V as a subcomplex, and take N to be the closed star of V in the second
barycentric subdivision. In the second, define φ : CP` → R by φ(x) = |f(x)|2 / ||x||2d,
where d = deg f , and take N = φ−1([0, δ]), for sufficiently small δ > 0. As shown
by Durfee [9], these constructions yield isotopic neighborhoods, independent of the
choices made.

Clearly, N is a thickening of V . Hence, we may define the boundary manifold of V
to be

(2.1) M = ∂N.

This is a compact, orientable, smooth manifold of dimension 2`− 1. If ` = 1, then V
consists of, say, n points on the sphere, and so M is a disjoint union of n circles. If
` > 1, then M is connected. Here is a simple illustration.

Example 2.1. Let V be a pencil of n + 1 hyperplanes in CP`, ` ≥ 2, defined by the
polynomial f = xn+1

0 −xn+1
1 . In this case, X may be realized as the complement of n

parallel hyperplanes in C`, and so it is homotopy equivalent to the n-fold wedge
∨n S1.

On the other hand, CP` \ N = (D2 \ {n disks}) × D2(`−1); hence M is diffeomorphic
to the n-fold connected sum #nS1 × S2(`−1).

Note that the complement X = CP` \ V is homotopy equivalent to the interior
of the manifold with boundary CP` \ N◦, and that M = ∂(CP` \ N◦). Also observe
that, while N is a thickening of V , the cohomology ring of M = ∂N is not a priori
determined by that of V .
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2.3. Cohomology groups. We now analyze in detail the cohomology groups of M .
We start by relating these cohomology groups to those of X. Throughout this section,
we use integral coefficients, unless otherwise noted.

Proposition 2.2. Let V be a hypersurface in CP`, with complement X and boundary

manifold M . For each 0 ≤ k ≤ 2` − 1, there is an exact sequence

(2.2) 0 // Hk(X) // Hk(M) // Hk+1(X,M) // 0 .

Moreover, Hk+1(X,M) ∼= H2`−k−1(X), and the sequence splits, except possibly when

k = `.

Proof. Let i : X → M and j : V → CP` be the inclusion maps. Consider the fol-
lowing commuting diagram, with rows long exact sequences of pairs, and vertical
isomorphisms given by the homotopy equivalence V ↪→ N̄ and excision, respectively:

(2.3) // Hk(CP`, V ) // Hk(CP`)
j∗ // Hk(V ) // Hk+1(CP`, V ) //

// Hk(CP`, N)
∼=

››

∼=

OO

// Hk(CP`)

››

=
OO

// Hk(N)

››

∼=

OO

// Hk+1(CP`, N)
∼=

››

∼=

OO

//

// Hk(X,M) // Hk(X)
i∗ // Hk(M) // Hk+1(X,M) //

By Lefschetz Duality, Hk(CP` \ N◦,M) ∼= H2`−k(CP` \ N◦) for each k ≥ 0. Since
X ' CP` \ N◦, we obtain Hk(X,M) ∼= H2`−k(X).

By the Lefschetz hyperplane section theorem, the map j∗ : Hk(CP`) → Hk(V ) is
an isomorphism for k ≤ ` − 2 and a monomorphism for k = ` − 1. Chasing the
diagram, we find that sequence (2.2) is exact, for each k ≤ ` − 2.

Now, it is well known that X is a Stein space, and thus has the homotopy type
of a CW-complex of dimension at most `. In particular, Hk(X) = 0 for k > `,
and H`(X) is finitely generated and torsion-free. Furthermore, the boundary map
Hk(CP`, V ; Q) → Hk(CP`; Q) is the zero map; see [7, p. 146]. By Lefschetz duality,
H`(X,M) ∼= H`(X). Hence the map H`(X,M) → H`(X) is the zero map. We
conclude that sequence (2.2) is exact for k ≥ ` − 1, as well.

For k < ` − 1 or k > `, one of the side terms in (2.2) vanishes, so obviously the
sequence splits. For k = `−1, we know H`(X) is torsion-free, so (2.2) splits again. ˜

Corollary 2.3. The Betti numbers of M are given by bk(M) = bk(X) + b2`−k−1(X).
Hence, the Poincaré polynomials of M and X are related by:

(2.4) P (M, t) = P (X, t) + t2`−1 · P (X, t−1).

Proposition (2.2) determines the cohomology groups of M in terms of the (co)homo-
logy groups of X, except possibly the torsion in H`(M). By the Universal Coefficient
Theorem, this torsion fits into the short exact sequence

(2.5) 0 // Tors(H`−1(X)) // Tors(H`(M)) // Tors(H`−1(X)) // 0 .
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This sequence may or may not split. As we shall see in examples below, both possi-
bilities can occur.

Example 2.4. Let V be a smooth algebraic hypersurface in CP` of degree d. In this
case, N can be taken to be a tubular neighborhood of V , diffeomorphic to the unit
normal disk bundle ν. Hence M is the total space of the S1-bundle over V with Euler
number e = c1(ν)[V ].

In particular, if ` = 2, then V is a curve of genus g =
(

d−1
2

)
, with e = d2. Hence, by

the Gysin sequence, H2(M) = Zd2. On the other hand, H1(X) = Zd. Thus, in this
instance, (2.5) is a non-split exact sequence, of the form 0 → Zd → Zd2 → Zd → 0.

2.4. Affine hypersurfaces and Milnor fibrations. Let V0 ⊂ C` be an affine
hypersurface, defined by the vanishing of a polynomial f0 = f0(x1, . . . , x`) of degree
n. Let V be the projective closure of V0, defined by the vanishing of the homogeneous
polynomial f(x0, x1, . . . , x`) = xn+1

0 ·f0(x1/x0, . . . , x`/x0). Clearly, CP` \V = C` \V0.
If f0 itself is homogeneous, then f(x0, x1, . . . , x`) = x0 ·f0(x1, . . . , x`). Moreover, we

can take the regular neighborhood N of V to be the union of a regular neighborhood of
V0, say N0, with a tubular neighborhood of the hyperplane at infinity (after rounding
corners). Thus, CP` \ N◦ is diffeomorphic to D2` \ (D2` ∩ N◦

0 ), and so

M = (S2`−1 \ (S2`−1 ∩ N0))
⋃

D2` ∩ ∂N0 .

As shown in [22], each of the two sides of the above decomposition is diffeomor-
phic to the total space of the Milnor fibration, F → Y → S1, determined by the
homogeneous polynomial f0. Thus, M is the double of the manifold with boundary
Y :

(2.6) M = ∂(Y × I) = Y ∪∂Y Y.

Furthermore, M fibers over the circle, with fiber the double of F .
Notice that, in this situation, the exact sequence (2.2) always splits. Indeed, the

inclusion Y → X is a homotopy equivalence, which factors through the inclusions
Y → M and i : M → X. Thus, i∗ : H∗(X) → H∗(M) is a split injection.

Example 2.5. Let f = x0x1 · · ·x` be the polynomial defining the Boolean arrange-
ment in CP`. Then M = S`−1 × T `, where T ` is the `-torus; see [7, Example 2.29].

Example 2.6. Let f = x0(x
n
1 −xn

2 ) be the polynomial defining a near pencil of n+1
lines in CP2. In this case, Y admits a fibration over the circle (different from the
Milnor fibration!), with fiber D2 \{n − 1 disks}, and monodromy a Dehn twist about
the boundary D2. It follows that M = S1 × Σn−1, where Σg denotes a surface of
genus g.

Example 2.7. More generally, let f = x0(x
n1

1 − yn1

1 ) · · · (xnk

k − ynk

k ), with ni ≥ 2.

Then M = T k × (#mT k × S2k−1), where m =
∏k

i=1(ni − 1).

Example 2.8. Let f = x0(x
2
1 + · · · + x2

`). In this case, the Milnor fiber F of f0 =
x2

1 + · · ·+x2
` is diffeomorphic to the unit disk bundle of S`−1. Thus, M fibers over S1

with fiber E, where S`−1 → E → S`−1 is the bundle with Euler number 1 − (−1)`.
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Now assume ` is odd and ` > 1. A computation with the Wang sequence for the
bundle F → Y → S1 shows that H`−1(X) = Z2; see [8, Example 3.2]. Hence, (2.5)
is a split exact sequence, of the form 0 → Z2 → Z2 ⊕ Z2 → Z2 → 0.

2.5. On asphericity of the boundary. If V is a hypersurface in CP`, the inclusion
map M → X is an (` − 1)-equivalence, see for instance [7, Proposition 2.31]; in
particular, πi(M) ∼= πi(X), for i < `− 1. A natural question arises: Is M aspherical?
In other words, do all the higher homotopy groups of M vanish?

If ` = 2, the manifold M3 is a graph manifold in the sense of Waldhausen. With a
few exceptions (such as lens spaces), manifolds of this type are aspherical. In higher
dimensions, though, this never happens.

Proposition 2.9. Let M be the boundary manifold of a hypersurface in CP`. If

` ≥ 3, then M is not aspherical.

Proof. Let π = π1(M) be the fundamental group of M . Since the inclusion i : M → X
is an (` − 1)-equivalence, and since ` ≥ 3, the induced map i∗ : π1(M) → π1(X) is
an isomorphism. Let g : X → K(π, 1) be a classifying map for the universal cover

X̃ → X. By definition, g∗ : π1(X) → π is an isomorphism. Hence, the composite

map g ◦ i : M → K(π, 1) is a classifying map for M̃ → M .
Now suppose M is aspherical. Then the map g ◦ i : M → K(π, 1) must be a ho-

motopy equivalence, since it induces an isomorphism on fundamental groups. Conse-
quently, (g ◦ i)∗ : H2`−1(π) → H2`−1(M) = Z is an isomorphism. On the other hand,
i∗ : H2`−1(X) → H2`−1(M) is the zero map, since the CW-complex X has dimension
at most `. This contradiction finishes the proof. ˜

3. The cohomology ring of the boundary manifold

Let V ⊂ CP` be a projective hypersurface, with complement X = CP` \ V , and
associated boundary manifold M . In this section, we determine the structure of
the cohomology ring H∗(M ; C) under certain conditions. These conditions are given
below in terms of the mixed Hodge structure on H∗(X; C), respectively H∗(V ; C).
First, we discuss the relevant algebraic structure.

3.1. The double of a graded ring. If A is a ring and B is an A-bimodule, the trivial

extension of A by B, written AnB, is the additive group A⊕B, with multiplication
(a, b)(a′, b′) = (aa′, a · b′ + b · a′), see [27]. Note that A ∼= {(a, 0)} is a subring of the
trivial extension, and that B ∼= {(0, b)} is a square-zero ideal.

Now let A =
⊕`

k=0 Ak be a finite-dimensional graded ring over a base ring R. We
will assume R is a commutative ring with 1, and all the graded pieces Ak are finitely
generated free R-modules. Define the double D(A) of A to be the trivial extension of

A by the graded A-bimodule Ā =
⊕2`−1

k=`−1 Āk, where Āk = Hom(A2`−k−1, R), and the
A-bimodule structure is given by a ·b(x) = b(xa) and b ·a(x) = b(ax) for a, x ∈ A and
b ∈ Ā. If A is a graded commutative ring, it is readily checked that D(A) = A n Ā
is a graded commutative ring as well.

Let µ : A ⊗ A → A, µ(a, a′) = aa′, denote the multiplication map of the ring A.
Then the multiplication map D(µ) : D(A) ⊗ D(A) → D(A) of the double restricts to
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µ on A ⊗ A and vanishes on Ā ⊗ Ā, while on A ⊗ Ā it vanishes, except for

(3.1) D(µ)(ak
j , ā

r
p) =

∑

i

µi,j,p ār−k
i , if µ(ar−k

i , ak
j ) =

∑

p

µi,j,p ar
p,

where {ak
j} is a (fixed) homogeneous basis for Ak and {āk

j} is the dual basis for

Ā2`−k−1 = Hom(Ak, C). The proof of the next result is straightforward.

Proposition 3.1. The doubling construction is functorial. In particular, if A1 and

A2 are isomorphic as graded rings, then D(A1) and D(A2) are isomorphic as graded

rings.

Let bk(A) = rank Ak be the Betti numbers of A, and let Hilb(A, t) =
∑`

k=0 bk(A)·tk

be its Hilbert series. Then:

(3.2) Hilb(D(A), t) = Hilb(A, t) + t2`−1 · Hilb(A, t−1).

In particular, if A is connected (i.e., b0(A) = 1), then D(A) is an Artin-Gorenstein
ring.

Recall from Proposition 2.3 that the cohomology of the boundary manifold M is
additively given by Hq(M) ∼= Hq(X) ⊕ Hq+1(X,M). Let R be a coefficient ring.

Theorem 3.2. Assume H∗(X;R) is a free R-module. If H∗(X,M ;R) is a square-

zero subring of H∗(M ;R), then H∗(M ;R) ∼= D(H∗(X;R)) as graded rings.

Proof. Recall that the inclusion i : M → X induces an injection i∗ : H∗(X) →
H∗(M) in cohomology. Let A = i∗(H∗(X;R)), and note that A is a subring of
H∗(M ;R). Comparing formulas (2.4) and (3.2), and using the R-freeness assump-
tion for H∗(X;R), we see that H∗(M ;R) and D(A) = AnĀ are additively isomorphic.
So it suffices to show that the cup-product structure in H∗(M ;R) coincides with the
multiplicative structure in D(A). This is clearly the case for the restriction to the
common subring A.

For simplicity, let us suppress the coefficient ring R from the notation. Fix a
generator ω ∈ H2`−1(M), and note that ω /∈ A. For each q, 0 ≤ q ≤ `, let {aq

1, . . . , a
q
bq
}

be a basis for Aq
∼= Hq(X), where bq = bq(A). By Poincaré duality, there are linearly

independent elements āq
1, . . . , ā

q
bq

in H q̄(M) so that aq
i ∪āq

j = δi,jω, where q̄ = 2`−q−1

and δi,j is the Kronecker index. Since A is a subring of H∗(M) and ω /∈ A, the dual
classes āq

i are also not in A. Identifying Hq(M) = Hq(X) ⊕ Hq+1(X,M), it follows
that {āq

1, . . . , ā
q
bq
} forms a basis for H q̄+1(X,M) ⊂ H q̄(M). Consequently, Hq(M)

has basis {aq
1, . . . , a

q
bq

, āq̄
1, . . . , ā

q̄
bq̄
}.

By hypothesis, we have āp
i ∪ āq

j = 0 for all p, q and i, j. It remains to consider the
cup-product ap

j ∪ āq
k ∈ Hp+q̄(M). If p = 0, then ap

j ∪ āq
k = 1 ∪ āq

k = āq
k. If p > q, then

ap
j ∪ āq

k = 0. So assume that 0 < p ≤ q ≤ `, which implies that p + q̄ ≥ `.

If p + q̄ > `, then ap
j ∪ āq

k =
∑bq−p

i=1 ci,j,kā
q−p
i for some constants ci,j,k. Write the

multiplication in A ∼= H∗(X) as ar
i · ap

j =
∑br+p

l=1 µi,j,la
r+p
l , and note that µj,i,l =

(−1)rpµi,j,l in this instance. For a fixed i, cupping with aq−p
i yields aq−p

i ∪ ap
j ∪ āq

k =
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ci,j,kω. Since

aq−p
i ∪ ap

j ∪ āq
k =

(bq−p∑

l=1

µi,j,la
q
l

)
∪ āq

k = µi,j,kω,

we must have ci,j,k = µi,j,k, and so ap
j ∪ āq

k =
∑bq−p

i=1 µi,j,kā
q−p
i .

We are left with the case p + q̄ = `, that is, p = 1 and q = `. We then have

a1
j ∪ ā`

k =
∑b`−1

i=1 ci,j,kā
`−1
i +

∑b`

i=1 di,j,ka
`
i for some constants ci,j,k and di,j,k. Since

0 = ā`
i ∪ a1

j ∪ ā`
k = ±di,j,kω, we have di,j,k = 0. Then, a calculation as above yields

ci,j,k = µi,j,k, where a`−1
i · a1

j =
∑b`

k=1 µi,j,ka
`
k. Thus, a1

j ∪ ā`
k =

∑b`−1

i=1 µi,j,kā
`−1
i .

Notice that these calculations show that the square-zero subring H∗(X,M) is, in
fact, an ideal in H∗(M). Using these calculations, and formula (3.1), it is readily
checked that the cup-product structure in H∗(M) coincides with the multiplicative
structure in D(H∗(X)). ˜

The freeness assumption from Theorem 3.2 holds, for example, when R = Z and
H∗(X) is torsion-free, or when R = | is a field. This assumption is necessary, as
illustrated by the smooth plane curve of degree d > 1 from Example 2.4. Indeed, for
such a curve, H2(M ; Z) = Zd2 does not split as a direct sum, and so H∗(M ; Z) 6∼=
D(H∗(X; Z)), even though H∗(X,M ; Z) is a square-zero subring of H∗(M ; Z), by
degree considerations.

3.2. Hodge structures. Now we pursue conditions which insure that the hypothe-
ses of Theorem 3.2 hold. These conditions will be given in terms of mixed Hodge
structures. For the rest of this section, we shall take coefficients in the ring R = C.

If V is a smooth projective variety, then, by a classical theorem of Hodge, each
cohomology group Hm(V ) admits a pure Hodge structure of weight m. That is, for
H = Hm(V ), there is a direct sum decomposition

(3.3) H =
⊕

p+q=m

Hp,q, where Hp,q = Hq,p (complex conjugation).

If X is a quasi-projective variety, then, by a well known theorem of Deligne, each
cohomology group of X admits a mixed Hodge structure. That is, for each k, there
is an increasing weight filtration

(3.4) 0 = W−1 ⊂ W0 ⊂ · · · ⊂ W2k = Hk(X),

such that each quotient Wm/Wm−1 of the subspaces Wm = Wm(Hk(X)) of Hk(X)
admits a pure Hodge structure of weight m as in (3.3).

The following properties of the weight filtration will be of use. See [26] for further
details.

(1) If X is projective, then Wk = Hk(X) for each k.
(2) If X is smooth, then 0 = Wk−1 ⊂ Hk(X) for each k.
(3) For any smooth compactification ι : X → X̄ of X, Wk = ι∗(Hk(X̄)) for each k.
(4) The weight filtration is functorial. For an algebraic map f : X → Y , the

induced homomorphism f ∗ strictly preserves the filtration: If x ∈ Wm(Hk(X))
is in the image of f ∗, there is an element y ∈ Wm(Hk(Y )) with f ∗(y) = x.
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It follows from work of Durfee and Hain [11] that the cohomology of the boundary
manifold M of a projective hypersurface V admits a mixed Hodge structure. Fur-
thermore, the cup-product of H∗(M) is a morphism of mixed Hodge structures, and
the top cohomology H2`−1(M) is of weight 2` (and type (`, `)).

Theorem 3.3. Let V be a hypersurface in CP` with complement X, and associated

boundary manifold M . If V is irreducible, then H∗(M ; C) ∼= D(H∗(X); C) as graded

algebras.

Proof. If ` = 1, then V is a point in CP1. In this instance, X is contractible, M is a
circle, and it is readily checked that H∗(M) ∼= D(H∗(X)).

So we may assume that ` ≥ 2. By Theorem 3.2, it suffices to show that H∗(X,M)
is a square-zero subalgebra of H∗(M). For this, it is enough to show that u∪v = 0 for
u ∈ Hr+1(X,M) ⊂ Hr(M) and v ∈ Hs+1(X,M) ⊂ Hs(M), where ` − 1 ≤ r, s ≤ `.

Recall that, for k ≤ 2`−2, the inclusion j : V → CP` induces a monomorphism in k-
th cohomology. From diagram (2.3), we see that Hk+1(X,M) is isomorphic to Hk

0 (V ),
the primitive cohomology of V , given by Hk

0 (V ) = coker[j∗ : Hk(CP`) → Hk(V )].
It is known that the connecting homomorphism in the long exact sequence of the

pair is weight-preserving, see [26]. This fact, and the properties recorded above,
imply that all cohomology classes in Hk+1(X,M) ∼= Hk

0 (V ) (for k ≤ 2` − 2) are of
weight at most k.

Now take u ∈ Hr+1(X,M) ⊂ Hr(M) and v ∈ Hs+1(X,M) ⊂ Hs(M) as above. If
r = s = `, then clearly u ∪ v = 0. If, say, r = ` − 1 and s = `, then u is of weight
at most ` − 1 and v is of weight at most `. Hence, u ∪ v is of weight at most 2` − 1
in H2`−1(M). But W2`−1(H

2`−1(M)) = 0 by the results of Durfee and Hain noted
above. So we must have u ∪ v = 0.

Finally, if r = s = ` − 1, then u ∪ v is of weight at most 2` − 2 in H2`−2(M).
Since V is irreducible, H1(X) = 0, the map j∗ : H2`−2(CP`) → H2`−2(V ) is an
isomorphism, and H2`−1(X,M) ∼= H2`−2

0 (V ) = 0. If ` = 2, then all non-trivial
classes in H2(M) = H2(X) are of weight at least 3 by Poincaré duality, since all
classes in H1(M) ∼= H1

0 (V ) = H1(V ) are of weight at most 1. If ` ≥ 3, then
H2`−2(M) = H2`−2(X) = 0 since X has the homotopy type of an `-dimensional
complex. It follows that u ∪ v = 0 in either case. ˜

Theorem 3.4. Let V be a hypersurface in CP` with complement X, and associated

boundary manifold M . If W`+1(H
`(X; C)) = 0, then H∗(M ; C) ∼= D(H∗(X; C)).

Proof. If ` = 1, then V is a union of, say, n + 1 points in CP1. In this instance, X is
homotopic to a bouquet of n circles, M is a disjoint union of n + 1 circles, and it is
readily checked that H∗(M) ∼= D(H∗(X)).

If ` ≥ 2, by Theorem 3.2, it suffices to show that H∗(X,M) is a square-zero
subalgebra of H∗(M). For this, as above, it is enough to show that u ∪ v = 0 for
u ∈ Hr+1(X,M) ⊂ Hr(M) and v ∈ Hs+1(X,M) ⊂ Hs(M), where (r, s) = (`−1, `) or
(r, s) = (`−1, `−1). By Poincaré duality, there are elements a, b ∈ H∗(X) ⊂ H∗(M)
so that a ∪ u = b ∪ v = ω ∈ H2`−1(M).

If (r, s) = (` − 1, `), then a ∈ H`(X) and b ∈ H`−1(X). Then, since X is smooth,
W`−2(H

`−1(X)) = 0, and b is of weight at least ` − 1. Since W`+1(H
`(X)) = 0 by
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hypothesis, a is of weight at least ` + 2. Since ω is of weight 2`, is follows that u is
of weight at most ` − 2 and v is of weight at most ` + 1. Consequently, u ∪ v is of
weight at most 2` − 1 in H2`−1(M), which is pure of weight 2`. Hence u ∪ v = 0.
If (r, s) = (` − 1, ` − 1), then a, b ∈ H`(X) are both of weight at least ` + 2, and a
similar argument shows that u ∪ v = 0. ˜

3.3. Plane algebraic curves. For an arbitrary projective hypersurface, the coho-
mology ring of the boundary manifold (with C coefficients) need not admit the struc-
ture of a double. We illustrate this phenomenon in dimension two.

Theorem 3.5. Let V = V1 ∪ · · · ∪ Vk be a reducible algebraic curve in CP2, with

complement X and boundary manifold M . Then H∗(M ; C) ∼= D(H∗(X; C)) if and

only if all the irreducible components Vj are rational curves.

Proof. If an irreducible component Vj of V is a rational curve, then the normalization
of Vj has genus 0. It follows that all nontrivial cohomology classes in H1

0 (Vj) = H1(Vj)
are of weight 0. Using this, an inductive argument with the Mayer-Vietoris sequence
reveals that the same holds for H1

0 (V ) = H1(V ). It follows that H2(X) ∼= H1
0 (V ) is

pure of weight 4, see [7, p. 246]. So H∗(M) ∼= D(H∗(X)) by Theorem 3.4.
Conversely, if an irreducible component Vj of V is not a rational curve, then the

degree of Vj is necessarily at least three. In this situation, H1(V ) = H1
0 (V ) contains

nontrivial classes of weights 0 and 1 (see [10]). It follows that H2(X) contains classes
of weights 3 and 4 (see [7]). (Note that the weight condition of Theorem 3.4 fails.)
In this instance, it is readily checked that the cup-product H1

0 (V )⊗H1
0 (V ) → H2

0 (V )
is nontrivial. Hence, H∗

0 (V ) ⊂ H∗(M) is not a square-zero subalgebra, compare
Theorem 3.2, and H∗(M) 6∼= D(H∗(X)). ˜

Suppose V is an arrangement of rational curves in CP2, with complement X, and
boundary manifold M . A presentation for the cohomology ring H∗(X; C) was given
in [4, Theorem 0.4]. Our Theorem 3.5 can now be used to compute the cohomology
ring H∗(M ; C).

4. Hyperplane arrangements

Let A be an arrangement of hyperplanes in CP`. For each hyperplane H of A, let
fH be a linear form with H = {fH = 0}. Then f = Q(A) =

∏
H∈A fH is a defining

polynomial for A, the hypersurface V = V (A) is given by V = f−1(0) =
⋃

H∈A H,

and the complement of the arrangement is X = X(A) = CP` \ V .

4.1. Boundary manifold of an arrangement. Let M = M(A) be the boundary
manifold of the hypersurface V = V (A). The next theorem expresses the (inte-
gral) cohomology ring of M in terms of the Orlik-Solomon algebra A = A(A) =
H∗(X(A); Z) of the arrangement A.

Theorem 4.1. Let A be an arrangement of hyperplanes in CP` with complement X
and associated boundary manifold M . Then H∗(M ; Z) ∼= D(H∗(X; Z)).
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Proof. For any hyperplane arrangement A, the cohomology Hk(X, C) is pure of
weight 2k, that is, the weight filtration takes the form 0 = W2k−1 ⊂ W2k = Hk(X; C),
for every k, see Shapiro [29], and also Kim [18]. Hence, by Theorem 3.4, we have
H∗(M ; C) ∼= D(H∗(X; C)).

Let A = H∗(X; Z) be the integral Orlik-Solomon algebra of A. It is well known

that A =
⊕`

k=0 Ak is torsion-free. Let D(A) = A n Ā be the integral double of

A, the trivial extension of A by Ā =
⊕2`−1

k=`−1 HomZ(A2`−k−1, Z), with A-bimodule
structure as given in §3.1. Since A = H∗(X; Z) is torsion-free, H∗(M ; Z) is also
torsion-free, see Proposition 2.3. Since H∗(M ; C) ∼= D(H∗(X; C)), it follows that
H∗(M ; Z) ∼= D(A). ˜

Let L(A) be the intersection poset of the arrangement A, the set of all nonempty
intersections of elements of A, ordered by reverse inclusion. By the Orlik-Solomon
theorem (see [24, 32]), the integral cohomology ring of X(A) is determined by L(A).
Our next result shows that the cohomology of M(A) is determined by L(A) and the
ambient dimension.

Corollary 4.2. If A1 and A2 are hyperplane arrangements in CP` with L(A1) ∼=
L(A2), then H∗(M(A1); Z) ∼= H∗(M(A2); Z).

Proof. By the Orlik-Solomon theorem, A(A1) ∼= A(A2). Proposition 3.1 implies
that the (integral) doubles are isomorphic. Thus, by Theorem 4.1, H∗(M(A1); Z) ∼=
H∗(M(A2); Z). ˜

4.2. Computing cup products. We now exhibit an explicit basis for the coho-
mology of the boundary manifold of an arrangement, and compute cup products in
that basis. Write A = {H0, H1, . . . , Hn}, and designate H0 as the hyperplane at
infinity in CP`. Let A′ = {H1, . . . , Hn} be the corresponding affine arrangement in
C` = CP` \ H0. Notice that A is the projective closure of A′.

The rank of the affine arrangement A′ is the maximal number of linearly inde-
pendent hyperplanes in A′. If A′ ⊂ C` has rank `, then A′ is said to be essential.
Observe that the projective arrangement A ⊂ CP` is essential if it contains ` + 1
independent hyperplanes. For an arrangement of rank r, it is well known that the
Betti numbers, bk(X), of the complement are nonzero for all k, 0 ≤ k ≤ r. See [24]
as a general reference.

Order the hyperplanes of A′ = {H1, . . . , Hn} by their indices. A circuit is an
inclusion-minimal dependent set of hyperplanes (in A′), and a broken circuit is a set
S for which there exists j < min(S) so that {Hj} ∪ {Hi | i ∈ S} is a circuit. Let
nbc = nbc(A′) denote the collection of subsets I ⊂ [n] for which

⋂
i∈I Hi 6= ∅ and

I contains no broken circuits. If the rank of A′ is r, then all elements of nbc are of
cardinality at most r. Note also that ∅ ∈ nbc.

Clearly, the complement of A in CP` is diffeomorphic to the complement of A′ in C`.
The integral cohomology of X = X(A) = X(A′) is isomorphic to the Orlik-Solomon
algebra A = A(A′), a quotient of an exterior algebra on n generators in degree 1. A
basis for A is indexed by the set nbc; denote this basis for A by {aI | I ∈ nbc}.
If |I| = k, then aI ∈ Ak. In particular, the unit in A is 1 = a∅ ∈ A0. Express the
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cup-product in A = H∗(X) by

(4.1) aIaJ =
∑

K∈nbc

µI,J,KaK .

Denote the images of the generators aI of A = H∗(X) in H∗(M) by the same
symbols. By Poincaré duality, there are elements āI ∈ H∗(M) so that aI āJ = δI,Jω,
where ω is a (fixed) generator of H2`−1(M) ∼= Z. In particular, ā∅ = ω. Since
H∗(M) = D(A), using (3.1), we obtain the following.

Corollary 4.3. The set {aI , āI | I ∈ nbc} forms a basis for H∗(M), and the cup-

product in H∗(M) is given by

aIaJ =
∑

K∈nbc

µI,J,KaK , aJ āK =
∑

I∈nbc

µI,J,K āI , āI āJ = 0.

Example 4.4. Let A be a near-pencil in CP2, with defining polynomial Q(A) =
x0(x

n
1 −xn

2 ). As noted in Example 2.6, the boundary manifold M is diffeomorphic to
S1 × Σn−1.

The complement X of A has Poincaré polynomial P (X, t) = 1 + nt + (n− 1)t2. A
basis for the Orlik-Solomon algebra A = H∗(X) is {1 = a∅, a1, . . . , an, a1,2, . . . , a1,n}.
The cup-product in A is given by a1aj = a1,j and aiaj = a1,j − a1,i for i > 1.

The boundary M has Poincaré polynomial P (M, t) = 1+(2n−1)t+(2n−1)t2 +t3.
A basis for the cohomology ring D(A) = H∗(M) is given by the above basis for the
Orlik-Solomon algebra, together with the dual classes {ā1,2, . . . , ā1,n, ā1, . . . , ān, ā∅ =
ω}. By Corollary 4.3, the cup-product in D(A) is given by the multiplication in A
recorded above, āI āJ = 0 for all I and J , aj āk = a1,j ā1,k = δj,kω, and aj ā1,k =
−āk + δj,k(ā1 + · · · + ān).

Now, H∗(Σn−1 ×S1) = H∗(Σn−1)⊗H∗(S1) is generated by aj ⊗ 1, bj ⊗ 1, 1 ≤ j ≤
n − 1, Γ ⊗ 1, and 1 ⊗ z, where aj , bj, Γ generate H∗(Σn−1) and satisfy ajbk = δj,kΓ,
and z generates H∗(S1). An explicit isomorphism H∗(S1 × Σn−1 × S1) → D(A) is
defined by

aj ⊗ 1 7→ ej+1 − e1, bj ⊗ 1 7→ f1,j+1, 1 ⊗ z 7→ e1, Γ ⊗ 1 7→ f1 + · · · + fn.

4.3. The K(π, 1) problem. A hyperplane arrangement A is said to be a K(π, 1)-
arrangement if the complement X = X(A) is aspherical, i.e., its universal cover is
contractible. Classical examples include the braid arrangement (Fadell-Neuwirth),
certain reflection arrangements (Brieskorn) and simplicial arrangements (Deligne).

The boundary manifold of an arrangement in CP1 is a disjoint union of circles. For
` ≥ 3, Proposition 2.9 shows that the boundary manifold of an arrangement in CP`

is never aspherical. In the remaining case, ` = 2, we have the following result.

Proposition 4.5. Let A be a line arrangement in CP2. The boundary manifold

M = M(A) is aspherical if and only if A is essential.

Proof. If A is not essential, then A is a pencil of lines in CP2, and so, by Example
2.1, M is a connected sum of S1 × S2’s. Thus, π2(M) 6= 0.
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If A is essential, it follows from work of Jiang and Yau [17] that M is an irreducible,
sufficiently large Waldhausen graph manifold. Hence, M is aspherical. (In fact, by
[28], M admits a metric of non-positive curvature.) ˜

5. Topological complexity

In this section, we relate the topological complexity of the boundary manifold
of a hyperplane arrangement to that of the complement. We start by relating the
zero-divisor length of a graded algebra to that of its double.

5.1. Cup length and zero-divisor length. Let A =
⊕`

k=0 Ak be a finite-dimen-
sional graded algebra over a field | (as usual, we assume all graded pieces are finite-
dimensional). Define the cup length of A, denoted cl(A), to be the largest integer q
for which there exist homogeneous elements a1, . . . , aq ∈ A>0 such that a1 · · · aq 6= 0.

The tensor product A⊗A has a natural graded algebra structure, with multiplica-
tion given by (u1⊗v1) · (u2⊗v2) = (−1)|v1|·|u2|u1u2⊗v1v2. Multiplication in A defines
an algebra homomorphism µ : A ⊗ A → A. Let J(A) be the kernel of this map. The
zero-divisor length of A, denoted by zcl(A), is the length of the longest non-trivial
product in this ideal.

Lemma 5.1. The ideal J(A) = ker(µ : A⊗A → A) is generated by the set of elements

{ζa := a ⊗ 1 − 1 ⊗ a | a ∈ A}.

Proof. Let z =
∑k

i=1 ai ⊗ bi be an element of J(A). Then
∑k

i=1 aibi = 0 in A, and it

is readily checked that z −
∑k

i=1 ζai
(1 ⊗ bi) =

∑k
i=1 1 ⊗ aibi = 1 ⊗ (

∑k
i=1 aibi) = 0 in

A ⊗ A. ˜

These two notions of length behave quite nicely with respect to the doubling op-
eration for graded algebras.

Proposition 5.2. Let A be a connected, finite-dimensional graded algebra, with dou-

ble D(A) = A n Ā. Then, cl(D(A)) = cl(A) + 1 and zcl(D(A)) = zcl(A) + 2.

Proof. Suppose that cl(A) = q, and let a = a1 · · · aq be an element in A of length q.
Then a · ā is a nonzero element in D(A), of length q + 1. Thus cl(D(A)) ≥ cl(A) + 1.
The equality cl(D(A)) = cl(A) + 1 then follows from the fact that Ā is a square-zero
ideal in D(A).

Next, suppose that zcl(A) = q, and let z = z1 · · · zq be an element in J(A) of length

q. Recall the basis {ak
j} of A from §3.1, and write z =

∑
ck1,k2

j1,j2
ak1

j1
⊗ ak2

j2
. Let m be

maximal so that i1 + i2 = m and there is a nonzero coefficient ci1,i2
r1,r2

in this sum.
Then, one can check that

z(āi1
r1
⊗ 1)(1 ⊗ āi2

r2
) = ±ci1,i2

r1,r2
ω ⊗ ω + z′,

where ω = 1̄ generates D(A)2`−1 and z′ is a linear combination of elements ak1

j1
āi1

r1
⊗

ak2

j2
āi2

r2
in D(A) of bidegree different from (2`− 1, 2`− 1). So ẑ = z(āi1

r1
⊗ 1)(1⊗ āi2

r2
) is

a nonzero element in J(D(A)), of length at least q + 2. Thus zcl(D(A)) ≥ zcl(A) + 2.
To show that zcl(D(A)) = zcl(A)+2, it suffices to check that ẑζα = ẑ(α⊗1−1⊗α) =

0 for α ∈ D(A). We may assume that α is an element of the basis {ak
j , ā

k
j} for D(A).
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If α = āk
j ∈ Ā, then ẑζα = 0 since Ā is a square-zero ideal in D(A). If α = ak

j ∈ A
and ẑζα 6= 0, then zζα is a nonzero element of length q +1 in J(A), contradicting the
assumption that zcl(A) = q. ˜

5.2. LS category and topological complexity. Let p : Y → X be a fibration.
The sectional category of p, denoted secat(p), is the smallest integer q such that X
can be covered by q open subsets, over each of which p has a section. A cohomological
lower bound is given by:

(5.1) secat(p) > cl(ker(p∗ : H∗(Y ; |) → H∗(X; |))),

see James [16] as a classical reference. If p : PX → X is the path-fibration of a pointed
space X, then secat(p) = cat(X), the Lusternik-Schnirelmann category of X. The
category of X depends only on the homotopy-type of X. Since PX is contractible, the
inequality (5.1) reduces to cat(X) > cl(X) := cl(H∗(X; |)). If X is a finite simplicial
complex, then cat(X) ≤ dim(X) + 1. Moreover, cat(X × Y ) ≤ cat(X) + cat(Y )− 1.

Now let XI be the space of all continuous paths from I = [0, 1] to X, with
the compact-open topology, and let π : XI → X × X be the fibration given by
π(γ) = (γ(0), γ(1)). The topological complexity of X, introduced by Farber in [12]
and denoted by tc(X), may be realized as the sectional category of π. Again, tc(X) =
secat(π) depends only on the homotopy type of X. Using the fact that XI ' X,
and the Künneth formula, (5.1) reduces to tc(X) > zcl(X) := zcl(H∗(X; |)). If X
is a finite simplicial complex, then cat(X) ≤ tc(X) ≤ 2 cat(X) − 1; in particular,
tc(X) ≤ 2 dim(X) + 1. Moreover, tc(X × Y ) ≤ tc(X) + tc(Y ) − 1.

As noted in [12], topological complexity is not determined by the LS category. For
example, cat(Sn) = 2 for all n ≥ 1, whereas tc(Sn) = 2 for n odd and tc(Sn) = 3 for
n even; also, cat(T n) = tc(T n) = n + 1, but cat(Σg) = 3 and tc(Σg) = 5 for g ≥ 2.

In [13], Farber and Yuzvinsky study the invariants tc(X) and zcl(X) in the case
when X is the complement of a (central, essential) hyperplane arrangement in C`.
They show that tc(X) ≤ 2`, and that this upper bound is attained for some classes
of arrangements, including generic arrangements of sufficiently large cardinality and
the reflection arrangements of types A, B, and D.

5.3. Topological complexity of the boundary manifold. Using Theorem 4.1
and Proposition 5.2, we see that the cup and zero-divisor lengths of the boundary
manifold of an arrangement are determined in a simple fashion by the respective
lengths of the complement.

Corollary 5.3. Let A be an arrangement of hyperplanes in CP`, with complement

X and boundary manifold M . Then:

cl(M) = cl(X) + 1 and zcl(M) = zcl(X) + 2.

Moreover, if A is essential, then cl(M) = ` + 1.

The relationship between the LS category and topological complexity of the bound-
ary manifold on one hand, and the complement on the other hand, is more subtle, as
the following example indicates.
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cat(X) 1 2 2 3 3 3

tc(X) 2 3 4 4 5 6

cat(M) 2 3 3 4 4 4

tc(M) 2 4 5 5 6 7

f x0 x0x1 x3
0 − x3

1 x0x1x2 x0(x
3
1 − x3

2) (x2
0 − x2

1)(x
2
0 − x2

2)(x
2
1 − x2

2)

Table 1. Possible values of LS category and topological complexity
for the complement X and boundary manifold M of a line arrangement
in CP2.

Example 5.4. Let A be the Boolean arrangement CP`. Then X ' T ` and M =
T ` × S`−1. An easy computation shows that cat(M) = cat(X) + 1 = ` + 2; on the
other hand, tc(M) = tc(X) + 2 = ` + 3 if ` is even, but tc(M) = tc(X) + 3 = ` + 4
if ` is odd.

For projective line arrangements, we can narrow down the possible values of the
category and topological complexity of the boundary manifold.

Proposition 5.5. Let A be a line arrangement in CP2, with boundary manifold M .

If A is not essential, then cat(M) = 2 or 3 and tc(M) = 4, 5, or 6. If A is essential,

then cat(M) = 4 and tc(M) = 5, 6, or 7.

Proof. As shown in [14], the LS category of a closed 3-manifold M depends only on
π1(M): it is 2, 3, or 4, according to whether π1(M) is trivial, a non-trivial free group,
or not a free group.

Suppose A is a pencil of n+1 lines. If n = 0, then M = S3, so cat(M) = tc(M) = 2.
If n = 1, then M = S1 × S2, so cat(M) = 3 and tc(M) = 4. If n > 1, then
M = #nS1 × S2, and so cat(M) = 3, and tc(M) = 5.

On the other hand, if A is essential, then, as noted in Proposition 4.5, M is
aspherical. In particular, cd(π1(M)) = 3, and so π1(M) cannot be free. Hence,
cat(M) = 4, and the bounds on tc(M) follow at once. ˜

All the various possibilities listed in Proposition 5.5 do occur. For example, if A is a
near-pencil of n+1 ≥ 4 lines, then M = S1×Σn−1, and so cat(M) = 4 and tc(M) = 6.
We summarize in Table 1 the possible values for the LS category and topological
complexity of both the complement and the boundary manifold of an arrangement
in CP2, together with sample representatives for the defining polynomials.

In high dimensions, a complete understanding of the possible values for cat(M)
and tc(M) is not at hand. Nevertheless, we have the following class of arrangements
(mentioned in Example 2.7), where precise formulas can be given.

Proposition 5.6. Let A be the hyperplane arrangement in CP2k defined by the poly-

nomial f = x0

∏k
i=1(x

ni

i − yni

i ), with ni ≥ 3. If X is the complement and M is the
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boundary manifold, then:

cat(X) = 2k + 1, tc(X) = 3k + 1,

cat(M) = 2k + 2, tc(M) = 3k + 3.

Proof. We have X ' T k ×
∏k

i=1

∨ni−1 S1, while M = T k × (#mT k × S2k−1), where

m =
∏k

i=1(ni − 1). A computation shows that cl(X) = 2k and zcl(X) = 3k. Hence,
by Corollary 5.3, cl(M) = 2k + 1 and zcl(M) = 3k + 2.

Let W = T k × S2k−1. Note that cl(W ) = k + 1, while cat(W ) ≤ cat(T k) +
cat(S2k−1) − 1 = k + 2; hence cat(W ) = k + 2. In fact, if we consider W with its

standard CW decomposition, we can take W =
⋃k+1

i=0 Ui, with U0 a small ball around
the 0-cell e0, Ui the union of the (open) i and i+2k−1 cells, for 1 ≤ i ≤ k, and Uk+1

the top cell e3k−1; plainly, each Ui is contractible in W .
Now, #mW is obtained by attaching a top cell to the wedge of m copies of W \Uk+1

at the basepoint e0; thus, we may find a decomposition #mW =
⋃k+1

i=0 Vi as before,
with Vi contractible in #mW . It follows that cat(#mW ) = k +2, and so tc(#mW ) ≤
2k + 3. Thus, tc(M) ≤ tc(T k) + tc(#mW ) − 1 ≤ 3k + 3, and we are done. ˜

As a consequence, we see that the difference between the topological complexity
and the LS category of the boundary manifold of an arrangement can be arbitrarily
large.

Corollary 5.7. For each k ≥ 1, there is an arrangement A with boundary manifold

M = M(A) for which tc(M) − cat(M) = k.

6. Resonance

In this section, we study the resonance varieties of the trivial extension of a graded
algebra. As an application, we obtain information about the structure of the reso-
nance varieties of the boundary manifold of a hyperplane arrangement. Throughout,
| will denote an algebraically closed field of characteristic 0.

6.1. Resonance varieties. Let A =
⊕`

k=0 Ak be a graded, graded-commutative,
connected algebra over |. Assume each graded piece Ak is finite-dimensional. For
each a ∈ A1, we have a · a = 0; thus, multiplication by a defines a chain complex

(6.1) (A, a) : 0 // A0 a // A1 a // A2 a // · · ·
a // A` // 0 .

By definition, the resonance varieties of A are the jumping loci for the cohomology
of these complexes:

(6.2) Rk
d(A) = {a ∈ A1 | dim| Hk(A, a) ≥ d},

for 0 ≤ k ≤ ` and 0 ≤ d ≤ bk = bk(A). Notice that A1 = Rk
0(A) ⊃ Rk

1(A) ⊃ · · · ⊃
Rk

bk
(A) ⊃ {0}. The sets Rk

d(A) are algebraic subvarieties of the affine space A1 =
|n, and are isomorphism-type invariants of the graded algebra A. They have been
the subject of considerable recent interest, particularly in the context of hyperplane
arrangements, see for instance [6, 21, 32], and references therein.
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An element a ∈ A1 is said to be nonresonant if the dimensions of the cohomology
groups H∗(A, a) are minimal. If A is the Orlik-Solomon algebra of an arrangement
of rank `, and a ∈ A1 is nonresonant, then Hk(A, a) = 0 for k 6= `, see for instance
[32].

6.2. Resonance varieties of a doubled algebra. We now compare the resonance
varieties of A to those of the doubled algebra D(A) = A n Ā, under the assumption
that ` ≥ 3. Notice that for such `, we have D(A)1 = A1.

Theorem 6.1. If A is a graded, connected |-algebra and ` ≥ 3, then the resonance

varieties of D(A) are given by

Rk
d(D(A)) =





Rk
d(A) if k ≤ ` − 2,

⋃
p+q=d

(
R`−1

p (A) ∩R`
q(A)

)
if k = ` − 1 or k = `,

R2`−k−1
d (A) if k ≥ ` + 1.

Proof. Fix a basis {ap
i } for A, and let {ap

i , ā
q
j} be the corresponding basis for the

double D(A) as in §3.1. Let mk = mk(a) and D(mk) = D(mk(a)) denote the matrices
of the maps Ak−1 → Ak and D(A)k−1 → D(A)k given by multiplication by a ∈ A1 =
D(A)1 in the bases specified above. An exercise in linear algebra reveals that

(6.3) Rk
d(A) =

{
a ∈ A1 | dim| Ak − rank mk − rank mk+1 ≥ d

}
.

Similarly,

(6.4) Rk
d(D(A)) =

{
a ∈ D(A)1 | dim| D(A)k − rank D(mk) − rank D(mk+1) ≥ d

}
.

The chain complex (D(A), a) has terms D(A)k = Ak for k ≤ ` − 2, D(A)`−1 =
A`−1 ⊕ Ā`, D(A)` = Ā`−1 ⊕ A`, and D(A)k = Ā2`−k−1 for k ≥ ` + 1. Using the
definition of the multiplication in D(A), one can check that the boundary maps of
this chain complex have matrices D(mk) = mk for k ≤ ` − 2,

D(m`−1) =
[
m`−1 0

]
, D(m`) =

[
0 m`

±m>

` 0

]
, D(m`+1) =

[
±m>

`−1

0

]
,

and D(mk) = ±m2`−k for k ≥ ` + 2. Calculating ranks of these matrices, and using
the above descriptions of the resonance varieties Rk

d(A) and Rk
d(D(A)) yields the

result. ˜

If ` = 2, then D(A)1 = A1 ⊕ Ā2. If (a, b) · (a, b) = 0 for all (a, b) ∈ D(A)1, then(
D(A), (a, b)

)
is a chain complex for each (a, b) as in (6.1), and the resonance varieties

of D(A) are

Rk
d(D(A)) = {(a, b) ∈ D(A)1 | dim| Hk(D(A), (a, b)) ≥ d}.

In this situation, the boundary maps of the chain complex (D(A), (a, b)) have matrices

D(m1) =
[
m1 m̄1

]
, D(m2) =

[
φ m2

−m>

2 0

]
, D(m3) =

[
m>

1

m̄>

1

]
,

where, as above, mk = mk(a) is the matrix of multiplication by a, Ak−1 → Ak,
m̄1 = m̄1(b) is the matrix of multiplication by b, Ā2 → Ā1, and φ = φ(b) is the
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matrix of multiplication by b, A1 → Ā1. Since A and D(A) are graded commutative,
the matrix φ is skew-symmetric. The structure of these matrices, D(m3) = D(m1)

>

and D(m2)
> = −D(m2), follows from the multiplication in D(A), see (3.1).

6.3. Aomoto complexes. The chain complex (6.1) may be realized as the spe-
cialization at a of the Aomoto complex of the algebra A. Let RA = Sym(A1) be
the symmetric algebra on the |-dual of A1, and let x = {x1, . . . , xn} be the basis
for A1 dual to the basis {a1

1, . . . , a
1
n} for A1. Then RA becomes identified with the

polynomial ring R = |[x]. The Aomoto complex of A is the chain complex

(6.5) A0 ⊗| R
d1

// A1 ⊗| R
d2

// A2 ⊗| R
d3

// · · ·
d`

// A` ⊗| R ,

where the boundary maps are multiplication by
∑n

j=1 a1
j ⊗ xj. Notice that the mul-

tiplication map µ : A1 ⊗ Ap−1 → Ap can be recovered from the boundary map dp.
Denote the matrix of d1 by dx, and that of d2 by ∆ = ∆A. If the multiplication
A1⊗A1 → A2 is given by a1

i a
1
j =

∑m
k=1 µi,j,ka

2
k, the latter is an n×m matrix of linear

forms over R, with entries

(6.6) ∆j,k =
n∑

i=1

µi,j,kxi.

The (transpose of the) matrix ∆A is the (linearized) Alexander matrix of the algebra
A, which appears in various guises in, for instance, [5, 6, 21, 25].

The Aomoto complex of the double D(A) may be constructed analogously. In
light of Theorem 6.1, we focus on the case ` = 2. Here, D(A)1 = A1 ⊕ Ā2, with basis
{a1

i , ā
2
j}, where 1 ≤ i ≤ n and say 1 ≤ j ≤ m. Identify the ring RD(A) = Sym(A1⊕Ā2)

with the polynomial ring |[x,y]. Then, the Aomoto complex of D(A) is the chain
complex

(6.7) D(A)0 ⊗| S
D1

// D(A)1 ⊗| S
D2

// D(A)2 ⊗| S
D3

// D(A)3 ⊗| S ,

where the boundary maps are multiplication by
∑n

i=1 a1
i ⊗xi +

∑m
j=1 ā2

j ⊗ yj. Denote

the matrix of D1 by
(
dx dy

)
, and that of D2 by ∆D(A). Then it follows from (3.1)

that the matrix of D3 is
(
dx dy

)
>

, and that

(6.8) ∆D(A) =

(
Φ ∆A

−∆>

A 0

)
,

where Φ is the n× n matrix with entries Φi,j =
∑m

k=1 µi,j,kyk. Notice that ∆D(A) is a
skew-symmetric matrix of linear forms, and that dxΦ = dy∆>

A.

If A =
⊕`

k=0 Ak and ` ≥ 3, the relationship between the Aomoto complexes of A
and D(A) is implicit in the proof of Theorem 6.1. We relate these complexes in the
case ` = 2. Consider the Aomoto complex of A and its dual

A0 ⊗| S
dx // A1 ⊗| S

∆A // A2 ⊗| S and Ā2 ⊗| S
−∆>

A // Ā1 ⊗| S
−d>

x // Ā0 ⊗| S,

where we have extended scalars and changed the signs for reasons which will become
apparent.
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Lemma 6.2. The maps {dy,−Φ, d>

y} provide a chain map

A0 ⊗| S
dx //

dy

››

A1 ⊗| S
∆A //

−Φ
››

A2 ⊗| S

d>
y

››

Ā2 ⊗| S
−∆>

A // Ā1 ⊗| S
−d>

x // Ā0 ⊗| S.

Furthermore, the Aomoto complex of D(A) is the mapping cone of this chain map.

An alternate way to compute the resonance varieties R1
d(A) is by taking the zero

locus of the determinantal ideals of the linearized Alexander matrix of A. If Ψ is a
p × q matrix (p ≤ q) with polynomial entries, define Rd(Ψ) = V (Ep−d(Ψ)) where
Er(Ψ) is the ideal of r × r minors. Proceeding as in the proof of Theorem 3.9 from
[21] (see also [6]), we find that R1

d(A) = Rd(∆A). Similarly, R1
d(D(A)) = Rd(∆D(A)).

6.4. Resonance of arrangements. For a space X with the homotopy type of a
finite CW-complex, define the resonance varieties of X by Rk

d(X) = Rk
d(H

∗(X; |)).
Let A be an arrangement of hyperplanes, with complement X, boundary manifold

M , and Orlik-Solomon algebra A = H∗(X; |). If A is an arrangement in CP` with ` ≥
3, then it follows from Theorem 6.1 that the resonance varieties of the complement,
Rk

d(X) = Rk
d(A), completely determine the resonance varieties, Rk

d(M) = Rk
d(D(A)),

of the boundary manifold. So assume that A ⊂ CP2 is a line arrangement.
The complex (A, a) of (6.1) may be realized as the specialization A• ⊗| R|x 7→a of

the Aomoto complex of A. Since D(A)1 = A1 ⊕ A2, the resonance varieties of the
boundary manifold are given by

Rk
d(M) = Rk

d(D(A)) = {(a, b) ∈ A1 ⊕ A2 | dim Hk(D(A), (a, b)) ≥ d}.

The complex (D(A), (a, b)) may be realized as the specialization D(A)• ⊗| S|(x,y)7→(a,b)

of the Aomoto complex of D(A). The properties of the boundary maps of the complex
(6.7) noted above imply that the resonance varieties of M satisfy Rk

d(M) = R3−k
d (M).

Recall that, for nonresonant a ∈ A1, we have Hk(A, a) = 0 for k = 0, 1. Write
bk = bk(A) = dim| Ak, and β = 1 − b1 + b2. Note that β = dim| H2(A, a).

Proposition 6.3. Let A ⊂ CP2 be a line arrangement with Orlik-Solomon algebra

A and double D(A).

(1) If a ∈ A1 is nonresonant for A, then for any b, (a, b) ∈ D(A)1 is nonres-

onant for D(A). Furthermore, H0(D(A), (a, b)) = H3(D(A), (a, b)) = 0 and

H1(D(A), (a, b)) = H2(D(A), (a, b)) = |β.

(2) If a ∈ R1
d(A) is nonzero, then for any b, (a, b) ∈ R1

d+β(D(A)).

(3) If b 6= 0, then (0, b) ∈ R1
d(D(A)), where d = b2 − 1 + dim|

(
ker Φ|y 7→b

)
.
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Proof. Given (a, b) ∈ D(A)1, by Lemma 6.2, there is a corresponding short exact

sequence of chain complexes 0 // (Ā#, a)−1 // (D(A), (a, b)) // (A, a) // 0 :

Ā2

››

−∆>

A // Ā1

››

−dx // Ā0

››
D(A)0

››

„

dx dy

«

// D(A)1

››

0

B

B

@

Φ ∆A

−∆>

A 0

1

C

C

A

// D(A)2

››

0

B

B

@

d>

x

d>

y

1

C

C

A

// D(A)3

A0
dx // A1

∆A // A2

where (Ā#, a) denotes the specialization at a of the dual of the Aomoto complex of
A. Passing to cohomology yields a long exact sequence
(6.9)

0 // H0(D(A)) // H0(A) // H0(Ā#) // H1(D(A)) // H1(A) //

// H1(Ā#) // H2(D(A)) // H2(A) // H2(Ā#) // H3(D(A)) // 0

where, for instance Hk(A) = Hk(A, a). Using the fact that Hk(Ā#) ∼= H2−k(A),
calculations with this long exact sequence may be used to establish all three asser-
tions. ˜

As a consequence of Proposition 6.3, we obtain the following.

Corollary 6.4. The resonance varieties of the doubled algebra D(A) satisfy

(1) R1
d(D(A)) = D

1(A) for d ≤ β.

(2) R1
d(A) × A2 ⊆ R1

d+β(D(A)).

(3) {0} ×Rd(Φ) ⊆ R1
d+b2(A)(D(A)).

All irreducible components of R1
d(X) = R1

d(A) are linear, see [6]. From items
(1) and (2) in the above Corollary, it is clear that the resonance varieties of M
contain linear components as well. However, item (3) leaves open the possibility
that R1

d(M) = R1
d(D(A)) contains non-linear components, for d ≥ b2(A). This does

indeed occur, as shown next.

6.5. General position arrangements. Let An be a projective line arrangement
consisting of n + 1 lines in general position. We identify the resonance varieties of
the boundary manifold M3

n = M(An).
The Orlik-Solomon algebra, A = E/m

3, is the rank 2 truncation of the exterior
algebra generated by e1, . . . , en, where m = (e1, . . . , en). Note that A has Betti
numbers b1 = n, b2 =

(
n
2

)
, and that β = 1 − b1 + b2 =

(
n−1

2

)
.

For this arrangement, the Alexander matrix ∆A is the transpose of the matrix of
the Koszul differential δ2 : E2 ⊗ S → E1 ⊗ S. The submatrix Φ of the Alexander
matrix ∆D(A) recorded in (6.8) is the generic n × n skew-symmetric matrix of linear
forms Φn, with entries (Φn)i,j = yi,j above the diagonal.
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Identity D(A)1 = E1 × E2. Note that R1
d(A) = R1

d(E) = {0} for d > 0. An
analysis of the long exact sequence (6.9) in light of this observation yields the following
sharpening of Corollary 6.4 for general position arrangements.

Proposition 6.5. The resonance varieties of the boundary manifold Mn of a general

position arrangement of n + 1 lines in CP2 are given by:

R1
d(Mn) =





E1 × E2 if d ≤
(

n−1
2

)
,

{0} × E2 if
(

n−1
2

)
< d <

(
n
2

)
,

{0} ×Rd−(n
2)

(Φn) if
(

n
2

)
≤ d <

(
n
2

)
+ n,

{0} × {0} if d =
(

n
2

)
+ n.

If Ψ is a skew-symmetric matrix of size n with polynomial entries, define the
Pfaffian varieties of Ψ by

(6.10) Pd(Ψ) = V (Pf2(bn/2c−d)(Ψ)),

where Pf2r(Ψ) is the ideal of 2r × 2r Pfaffians of Ψ. For n even, the ideal Pfn(Ψ) is
principal, generated by Pfaff(Ψ), the maximal Pfaffian of Ψ. Well known properties
of Pfaffians (see, for instance [3, Cor. 2.6]) may be used to establish the following
relationship between the resonance and Pfaffian varieties of Ψ:

(6.11) V (E2r−1(Ψ)) = V (E2r(Ψ)) = V (Pf2r(Ψ)).

In other words, for n even, we have R1
2d+1(Ψ) = R1

2d(Ψ) = Pd(Ψ), while for n odd,
we have R1

2d(Ψ) = R1
2d−1(Ψ) = Pd−1(Ψ).

For n = 2k, the Pfaffian of the generic skew-symmetric matrix Φn is given by

(6.12) Pfaff(Φn) =
∑

m

σ(m)ω(m),

where the sum is over all perfect matchings m = {{i1, j1}, {i2, j2}, . . . , {ik, jk}}, par-
titions of [2k] into blocks of size two with ip < jp), and where σ(m) is the sign of
the corresponding permutation

(
1 2 3 4 ... 2k−1 2k
i1 j1 i2 j2 ... ik jk

)
, and ω(m) = yi1,j1yi2,j2 · · · yik,jk

,
see for instance [2]. Note that Pfaff(Φn) is a polynomial of degree k = n/2 in the
variables yi,j.

For arbitrary n, it is known that the Pfaffian variety Pd(Φn) is irreducible, with
singular locus Pd+1(Φn), see [3, 19]. These facts, together with Proposition 6.5 and
(6.11), yield the following.

Corollary 6.6. Let Mn be the boundary manifold of the general position arrangement

An. For n ≥ 4 and
(

n
2

)
< d <

(
n
2

)
+n−2, the resonance variety R1

d(Mn) is a singular,

irreducible variety.
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