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NONRESONANT EIGENVALUES

DANIEL C. COHEN† AND PETER ORLIK‡

Abstract. An arrangement is a finite set of hyperplanes in a finite dimensional
complex affine space. A complex rank one local system on the arrangement comple-
ment is determined by a set of complex weights for the hyperplanes. We study the
Gauss-Manin connection for the moduli space of arrangements of fixed combinato-
rial type in the cohomology of the complement with coefficients in the local system
determined by the weights. For nonresonant weights, we solve the eigenvalue prob-
lem for the endomorphisms arising in the 1-form associated to the Gauss-Manin
connection.

1. Introduction

Let A = {H1, . . . , Hn} be an arrangement of n ordered hyperplanes in C`, with
complement M = M(A) = C` \

⋃n
j=1Hj. Assume that A contains ` linearly inde-

pendent hyperplanes. A complex rank one local system on M is determined by a
collection of weights λ = (λ1, . . . , λn) ∈ Cn. Associated to λ, we have a representa-
tion ρ : π1(M)→ C∗, given by γj 7→ exp(−2π iλj) for any meridian loop γj about the
hyperplane Hj of A, and an associated local system L on M. For weights which are
nonresonant in the sense of Schechtman, Terao, and Varchenko [13], the local system
cohomology vanishes in all but one dimension, Hq(M;L) = 0 for q 6= `. Parallel
translation of fibers over curves in the moduli space of all arrangements combinatori-
ally equivalent to A gives rise to a Gauss-Manin connection on the vector bundle over
this moduli space with fiber H`(M;L). This connection arises in a variety of appli-
cations, including the Aomoto-Gelfand theory of hypergeometric integrals [2, 8, 12],
and the representation theory of Lie algebras and quantum groups [14, 16]. As such,
it has been studied by a number of authors, including Aomoto [1], Schechtman and
Varchenko [14, 16], Kaneko [10], and Kanarek [9].

Denote the combinatorial type of A by T . The moduli space of all arrangements
of type T is determined by the set of dependent collections of subsets of hyperplanes
in the projective closure of A in CP

`, see [15]. Let B(T ) be a smooth, connected
component of this moduli space. There is a fiber bundle p : M(T ) → B(T ) whose
fibers, p−1(b) = Mb, are complements of arrangements Ab of type T . Since B(T ) is
connected, Mb is diffeomorphic to M. The fiber bundle p : M(T ) → B(T ) is locally
trivial. Consequently, given a local system on the fiber, there is an associated flat
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vector bundle H → B(T ), with fiber H`(Mb;Lb) at b ∈ B(T ). For nonresonant
weights, Terao [15] showed that the Gauss-Manin connection on this vector bundle
has connection 1-form

(1.1) ∇ =
∑

ΘT ′ ⊗ Ω–(T ′, T ),

where ΘT ′ is a logarithmic 1-form on the closure of B(T ) with a simple pole along the
divisor corresponding to the codimension one degeneration T ′ of T , and Ω–(T ′, T )
is an endomorphism of H`(M;L). For general position arrangements, this Gauss-
Manin connection was found by Aomoto and Kita [2]. Terao [15] computed this
connection for a larger class of arrangements. In [4], we determined the “Gauss-
Manin endomorphisms” Ω–(T ′, T ) for all arrangements. The aim of this paper is to
solve the eigenvalue problem for these endomorphisms.

Identify the hyperplanes of A with their indices. An edge of A is a nonempty inter-
section of hyperplanes in A. An edge is dense if the subarrangement of hyperplanes
containing it is irreducible: the hyperplanes cannot be partitioned into nonempty sets
so that, after a change of coordinates, hyperplanes in different sets are in different
coordinates, see [13]. For an edge X, define λX =

∑
X⊆Hj

λj . Let A∞ = A∪Hn+1 be

the projective closure of A, the union of A and the hyperplane at infinity in CP
`, see

[12]. Set λn+1 = −
∑n

j=1 λj . Schechtman, Terao, and Varchenko [13], refining work of

Esnault, Schechtman, and Viehweg [6], found conditions on the weights which insure
that the local system cohomology groups vanish except in the top dimension. They
proved that if M is the complement of an arrangement A in C` of combinatorial type
T with ` linearly independent hyperplanes and L is a rank one local system on M

whose weights λ satisfy the condition

λX /∈ Z≥0 for every dense edge X of A∞,

then Hq(M;L) = 0 for q 6= ` and dimH`(M;L) = |χ(M)|, where χ(M) is the Euler
characteristic of M. These conditions depend only on the type T , so we call weights
satisfying them T -nonresonant.

Throughout this paper, we assume that A contains ` linearly independent hyper-
planes, hence n ≥ `, and that λ is T -nonresonant. We consider only codimension
one degenerations of combinatorial types and refer to these as simply degenerations.

Theorem. Let T ′ be a degeneration of T , and let λ be a collection of generic T -
nonresonant weights for the rank one local system L. Then the Gauss-Manin endo-
morphism Ω–(T ′, T ) is diagonalizable. The spectrum of Ω–(T ′, T ) is contained in
the set {0, λS}, where λS =

∑
j∈S λj for some S ⊂ {1, . . . , n+ 1}.

The set S is part of a pair (S, r), called the principal dependence of the degeneration
T ′ of T , see Theorem 3.2. It follows from our results in Sections 2, 4, and 5 that
weights λ which satisfy λS 6= 0 are sufficiently generic. Our results also yield an
algorithm for determining the multiplicities of the eigenvalues, see Remark 5.3.

Let G denote the combinatorial type of a general position arrangement of n hy-
perplanes in C`. The cohomology of the complement of an arrangement of type G
is the rank ` truncation, A•(G), of the exterior algebra on n generators ej, j ∈ [n],
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where [n] = {1, . . . , n}, corresponding to the hyperplanes. The Orlik-Solomon alge-
bra A•(A) ' H•(M(A); C) is generated by one dimensional classes aj , j ∈ [n]. It is
the quotient of A•(G) by a homogeneous ideal, I•(A), hence it is a finite dimensional
graded C-algebra [11]. It is known that A•(A) depends only on the combinatorial
type T of A so we may write A•(T ).

Weights λ yield an element a– =
∑n

j=1 λjaj in A1(T ), and multiplication by a–

gives A•(T ) the structure of a cochain complex. The resulting cohomology H•(T ) =
H•(A•(T ), a–) is a combinatorial analog of H•(M(A);L). If the weights are T -
nonresonant, then H•(M(A);L) ' H•(A•(T ), a–) and the only (possibly) nonzero
group H`(T ) has the βnbc basis of Falk and Terao [7]. This basis provides an explicit
surjection τ : H`(G) → H`(T ). Our results in [4] yield a commutative diagram of
endomorphisms for each degeneration T ′ of T :

(1.2)

H`(G)
τ

−−−→ H`(T )yeΩ–(T ′,T )

yΩ–(T ′,T )

H`(G)
τ

−−−→ H`(T )

The endomorphism Ω̃–(T ′, T ) of H`(G) is induced by an endomorphism ω•
–
(T ′, T ) of

A`(G), see [5], (3.3), and Theorem 3.1.
Here is a brief outline of the paper. In Section 2, we recall the Aomoto complex

and the “formal Gauss-Manin connection matrices” of [5] which are essential in our
arguments. We recall the moduli space of combinatorially equivalent arrangements
in Section 3 and identify the principal dependence (S, r) of the degeneration T ′ of
T . Using the principal dependence, we construct a realizable type T (S, r) and an
endomorphism Ω–(S, r) of H`(G). In Section 4, we determine the eigenstructure of

the endomorphism Ω–(S, r). In Section 5, we show that Ω̃–(T ′, T ) may be replaced
by Ω–(S, r) in (1.2) and thereby determine the eigenstructure of Ω–(T ′, T ). We
conclude with several examples to illustrate the main result.

2. General position

In this section, we record a number of constructions in the Orlik-Solomon complex
of a general position arrangement which will be used subsequently.

Let G = G`
n be the combinatorial type of a general position arrangement of n

hyperplanes in C`, where n ≥ `. The Orlik-Solomon algebra A•(G) is the rank `
truncation of an exterior algebra on n generators. Let T = {i1, . . . , iq} ⊂ [n]. If
order matters, we call T a q-tuple and write T = (i1, . . . , iq) and eT = ei1 · · · eiq . The
algebra A•(G) is generated (as an algebra) by {ej | 1 ≤ j ≤ n}, and has (additive)
basis {eT}, where eT = 1 if T = ∅, and T 6= ∅ is an increasingly ordered tuple of
cardinality at most `.

Define a map ∂ : Aq(G) → Aq−1(G) by ∂(eT ) =
∑q

k=1(−1)k−1eTk
, where Tk =

(i1, . . . , îk, . . . , iq) if T = (i1, . . . , iq). Then ∂ ◦ ∂ = 0, providing A•(G) with the
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structure of a chain complex

(2.1) (A•(G), ∂) : A0(G)
∂
←− A1(G)←− · · · ←− A`−1(G)

∂
←− A`(G)

It is well known that the homology of this complex is concentrated in the top dimen-
sion, Hq(A(G), ∂) = 0 for q 6= `. The dimension of the unique nontrivial homology

group is β(n, `) = dimH`(A
•(G), ∂) =

∑`
k=0(−1)k

(
n
k

)
=

(
n−1

`

)
.

Weights λ = (λ1, . . . , λn) ∈ Cn determine an element e– =
∑n

j=1 λjej in A1(G).
Since A•(G) is a quotient of an exterior algebra, we have e–e– = 0. Consequently,
multiplication by e– defines a cochain complex

(2.2) (A•(G), e–) : A0(G)
e–−→ A1(G) −→ · · · −→ A`−1(G)

e–−→ A`(G)

If λ 6= 0, it is well known that the cohomology of this complex is concentrated in the
top dimension, Hq(A•(G), e–) = 0 for q 6= `, and that dimH`(A•(G), e–) = β(n, `).

The endomorphism ω–(T ′, T ) ofA`(G) which induces the map Ω̃–(T ′, T ) : H`(G)→
H`(G) of (1.2) is the specialization at λ of a “formal Gauss-Manin connection en-
domorphism” given in [5] and in (3.3). The latter is a linear combination of endo-
morphisms ω•

S of the Aomoto complex (A•
R(G), ey) of G, a universal complex for the

cohomology H•(A•(G), e–). The Aomoto complex has terms Aq
R(G) = Aq(G) ⊗ R,

where R = C[y1, . . . , yn] is the polynomial ring, and the boundary map is given by
multiplication by ey =

∑n
j=1 yjej.

The endomorphisms ω•
S correspond to subsets S of [n + 1], the index set of the

projective closure of the general position arrangement in CP
`, G∞. The symmetric

group Σn+1 on n + 1 letters acts on A•(G) by permuting the hyperplanes of G∞,
and on R by permuting the variables yj, where yn+1 = −

∑n
j=1 yj. In the basis

{ej | 1 ≤ j ≤ n} for the Orlik-Solomon algebra, the action of σ ∈ Σn+1 is given by
σ(ei) = eσ(i) if σ(n+ 1) = n+ 1, and by

σ(ei) =

{
−eσ(n+1) if σ(i) = n+ 1,

eσ(i) − eσ(n+1) if σ(i) 6= n+ 1,

if σ(n + 1) 6= n + 1. Denote the induced action on the Aomoto complex by φσ :
A•

R(G)→ A•
R(G),

φσ(ei1 · · · eip ⊗ f(y1, . . . , yn)) = σ(ei1) · · · σ(eip)⊗ f(yσ(1), . . . , yσ(n)).

Lemma 2.1. For each σ ∈ Σn+1, the map φσ is a cochain automorphism of the
Aomoto complex (A•

R(G), ey).

If T = (i1, . . . , ip) ⊂ [n] is a p-tuple, then (j, T ) = (j, i1, . . . , ip) is the (p+ 1)-tuple
which adds j with 1 ≤ j ≤ n to T as its first entry. For S = {s1, . . . , sk} ⊂ [n + 1],
let σS denote the permutation

(
1 2 ··· k
s1 s2 ··· sk

)
. Write S ≡ T if S and T are equal sets.
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Definition 2.2. Let T be a p-tuple, S a q + 1 element subset of [n+ 1], and j ∈ [n].
If S = S0 = [q + 1], define the endomorphism ω•

S0
: (A•

R(G), ey)→ (A•
R(G), ey) by

ωp
S0

(eT ) =





yj∂e(j,T ) if p = q and S0 ≡ (j, T ),

ey∂eT if p = q + 1 and S0 ≡ T ,

0 otherwise.

If S 6= S0, define ω•
S = φσS

◦ ω•
S0
◦ φ−1

σS
.

One can check that this agrees with the case by case definition in [5, Def. 4.1].

Proposition 2.3 ([5, Prop. 4.2]). For every subset S of [n + 1], the map ω•
S is a

cochain homomorphism of the Aomoto complex (A•
R(G), ey)).

For S0 = [s], 1 ≤ q ≤ `, and 1 ≤ r ≤ min(q, s− 1), consider the sets Vq,r
S0

and Wq,r
S0

of elements in Aq
R(G) given by

Vq,r
S0

= {eJeK | |J | ≤ r − 1}
⋃
{ηS0eJeK | |J | = r − 1} and

Wq,r
S0

= {eS0eK (if q ≥ s)}
⋃
{(∂eJ)eK | |J | ≥ r + 1}

⋃
{ηS0eJeK | |J | ≥ r},

where J ⊂ S0, K ⊂ [n] \ S0, and ηS =
∑

i∈S yiei. Let Bq,r
S0

= Vq,r
S0

⋃
Wq,r

S0
. If

S ⊂ [n + 1] and S 6= S0, define Bq,r
S = {φσS

(v) | v ∈ Bq,r
S0
}. Define Vq,r

S and Wq,r
S

analogously. Given weights λ = (λ1, . . . , λn), let Bq,r
S (λ) = {v|yi 7→λi

| v ∈ Bq,r
S } denote

the specialization of Bq,r
S at λ, a sets of vectors in Aq(G). Define Vq,r

S (λ) andWq,r
S (λ)

analogously. We will abuse notation and write ηS =
∑

i∈S λiei when working in the
Orlik-Solomon algebra. Note that ∂ηS = λS =

∑
i∈S λi.

Lemma 2.4. If λS 6= 0, the set of vectors Bq,r
S (λ) spans the vector space Aq(G).

Proof. It suffices to consider the case S = S0.
First, we show that the set {∂eJ | |J | = r+1}

⋃
{ηSeJ | |J | = r− 1} spans Ar(Gs

s),
where Gs

s is a general position arrangement of s hyperplanes (indexed by S) in Cs.
For this arrangement, both the chain complex (A•(Gs

s), ∂) of (2.1) and the cochain
complex (A•(Gs

s), e–) = (A•(Gs
s), ηS) of (2.2) are acyclic, and

dim im[∂ : Ar+1(Gs
s)→ Ar(Gs

s)] = β(s, r) =

(
s− 1

r

)
,

dim im[ηS : Ar−1(Gs
s)→ Ar(Gs

s)] =

(
s

r

)
− β(s, r) =

(
s− 1

r − 1

)
.

Note that dimAr(Gs
s) =

(
s
r

)
=

(
s−1

r

)
+

(
s−1
r−1

)
.

Suppose x ∈ span{∂eJ | |J | = r + 1} ∩ span{ηSeJ | |J | = r − 1}. Then ∂x = 0,
and x = ηSy for some y ∈ Ar−1(Gs

s). So ∂x = ∂(ηSy) = λSy − ηS∂y = 0. Since
λS 6= 0, we can write y = cηS∂y, where c = 1/λS. But this implies that x = ηSy = 0.
Consequently, {∂eJ | |J | = r + 1}

⋃
{ηSeJ | |J | = r − 1} spans Ar(Gs

s).
Using this, a straightforward exercise shows that the set of vectors Bq,r

S (λ) spans
the vector space Aq(G) = Aq(G`

n). ˜
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3. Principal dependence

Let T be the combinatorial type of the arrangement A of n hyperplanes in C` with
n ≥ ` ≥ 1. We consider the family of all arrangements of type T . Recall that A is
ordered by the subscripts of its hyperplanes and we assume that A, and hence every
arrangement of type T , contains ` linearly independent hyperplanes.

Choose coordinates u = (u1, . . . , u`) on C`. The hyperplanes of an arrangement

of type T are defined by linear polynomials αi = bi,0 +
∑`

j=1 bi,juj (i = 1, . . . , n).
We embed the arrangement in projective space and add the hyperplane at infinity as
last in the ordering, Hn+1. The moduli space of all arrangements of type T may be
viewed as the set of matrices

(3.1) b =




b1,0 b1,1 · · · b1,`

b2,0 b2,1 · · · b2,`
...

...
. . .

...
bn,0 bn,1 · · · bn,`

1 0 · · · 0




whose rows are elements of CP
`, and whose (` + 1) × (` + 1) minors satisfy certain

dependency conditions, see [12, Prop. 9.2.2].
Given S ⊂ [n+1], let NS(T ) = NS(b) denote the submatrix of (3.1) with rows spec-

ified by S. Let rankNS(T ) be the size of the largest minor with nonzero determinant.
Define the multiplicity of S in T by

(3.2) mS(T ) = |S| − rankNS(T ).

Call S dependent (in type T ) if mS(T ) > 0. For such S, the linear polynomials
{αj | j ∈ S} are dependent. For q ≤ n+ 1, let Dep(T )q denote the dependent sets of
cardinality q, and let Dep(T ) =

⋃
q Dep(T )q. If T ′ is a combinatorial type for which

Dep(T ) ⊂ Dep(T ′), let Dep(T ′, T ) = Dep(T ′) \ Dep(T ). Terao [15] showed that
the combinatorial type T is determined by Dep(T )`+1, but dependent sets of both
smaller and larger cardinality arise in our considerations, see Example 3.4.

Let

Dep(T )∗q = {S ∈ Dep(T )q |
⋂

j∈S

Hj 6= ∅}

and let Dep(T )∗ =
⋃

q Dep(T )∗q . If S ∈ Dep(T )∗, then codim(
⋂

j∈S Hj) < |S|.
If T ′ is a combinatorial type for which Dep(T )∗ ⊂ Dep(T ′)∗, let Dep(T ′, T )∗ =
Dep(T ′)∗ \ Dep(T )∗. If |S| ≥ ` + 2, then S ∈ Dep(T ) but S ∈ Dep(T )∗ if and only
if every subset of S of cardinality ` + 1 is dependent. It is convenient to work with
these smaller collections of dependent sets.

Define endomorphisms of A•
R(G) by

(3.3) ω•(T ) =
∑

S∈Dep(T )

mS(T ) · ω•
S and ω•(T ′, T ) =

∑

S∈Dep(T ′,T )

mS(T ′) · ω•
S.
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These are cochain homomorphisms of the Aomoto complex by Proposition 2.3. Since
Dep(T )∗q = Dep(T )q for q ≤ `+ 1, we have

(3.4) ω•(T ) =
∑

S∈Dep(T )∗

mS(T ) · ω•
S and ω•(T ′, T ) =

∑

S∈Dep(T ′,T )∗

mS(T ′) · ω•
S.

Theorem 3.1 ([5]). The endomorphism Ω̃–(T ′, T ) is induced by the specialization
ω–(T ′, T ) := ω`(T ′, T )|yj 7→λj

of the endomorphism ω`(T ′, T ).

Denote the cardinality of S by s = |S|. For 1 ≤ r ≤ min(`, s − 1), consider the
combinatorial type T (S, r) defined by

T ∈ Dep(T (S, r))∗ ⇐⇒ |T ∩ S| ≥ r + 1.

This type is realized by a pencil of hyperplanes indexed by S with a common subspace
of codimension r, together with n− s hyperplanes in general position. Note that for
r = 1 the hyperplanes in S coincide, so T (S, r) is a multi-arrangement.

Theorem 3.2. Let T ′ be a degeneration of a realizable combinatorial type T . For
each set Si ∈ Dep(T ′, T )∗, let ri be minimal so that Dep(T (Si, ri))

∗ ⊂ Dep(T ′)∗.
Given the collection {(Si, ri)}, there is a unique pair (S, r) with r = min{ri}, Si ⊂ S
for every pair (Si, ri) where ri = r, and Dep(T (S, r))∗ ⊂ Dep(T ′)∗.

Proof. Terao [15] classified the three codimension one degeneration types in the mod-
uli space of an arrangement whose only dependent set is the minimally dependent
set T of size q + 1.

I: |S ∩ T | ≤ q − 1 for all S ∈ Dep(T ′, T )∗;
II: {(m,Tk) | m 6∈ T} for each fixed k, 1 ≤ k ≤ |T |;

III: {(m,Tk) | 1 ≤ k ≤ |T |} for each fixed m 6∈ T .

If q = 1, then Type II does not appear. Recall that Tk = (i1, . . . , îk, . . . , iq+1) if
T = (i1, . . . , iq+1), and note that m ∈ [n+ 1] in cases II and III above.

It follows from our analysis of the corresponding types in general [5] that if a Type
II degeneration is present, then the value of r decreases and there is a unique set of
maximal cardinality with minimal r. In the other types, r remains constant, but a
unique dependent set of T increases in T ′. ˜

Definition 3.3. Let T ′ be a degeneration of T . We call the pair (S, r) which satisfies
the conditions of Theorem 3.2 the principal dependence of the degeneration.

Example 3.4. Let T be the combinatorial type of the arrangement A of 4 lines in
C2 depicted in Figure 1. Here Dep(T )∗ = {123}.
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Figure 1. A line arrangement and three degenerations
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The combinatorial types Ti of the (multi)-arrangements Ai shown in Figure 1 are
degenerations of T . For these degenerations, the collections {(Si, ri)} and corre-
sponding principal dependencies (S, r) are given in the table below.

{(Si, ri)} (S, r)
T1 (345, 2) (345, 2)
T2 (12, 1), (124, 2), (125, 2) (12, 1)
T3 (124, 2), (134, 2), (234, 2), (1234, 2) (1234, 2)

For the combinatorial type T (S, r), write ω•(S, r) = ω•(T (S, r)), see (3.4). In
Theorem 5.1 below, we show that the Gauss-Manin endomorphism Ωλ(T

′, T ) of (1.1)
is induced by the specialization of ω`(S, r) at T -nonresonant weights λ, ω`

–
(S, r).

First, we solve the eigenvalue problem for the latter endomorphism.

4. Diagonalization

The purpose of this section is to solve the eigenvalue problem for ωq
–
(S, r), the en-

domorphism of the Orlik-Solomon algebra obtained by specializing ωq(S, r) at generic
weights λ = (λ1, . . . , λn). This allows calculation of the eigenstructure of the induced
endomorphism in cohomology, Ω–(S, r), which is related to the Gauss-Manin endo-
morphism in Theorem 5.1. First, we establish several technical results concerning
the endomorphism ωq(S, r) of the Aomoto complex itself. Recall that these endo-
morphisms are given explicitly by

ω•(S, r) =
∑

K∈Dep(T (S,r))∗

mK(S, r) · ω•
K ,

where mK(S, r) is the multiplicity of K in type T (S, r), see (3.2), and ω•
K is given

in Definition 2.2. It follows from Proposition 2.3 that ω•(S, r) is a chain map. Note
that ωq(S, r) = 0 for q < r.

Given (S, r), define

Ψq
S,r =

∑

T⊂S
|T |=r+1

ωq(T, r).

Note that Ψr
S,r = ωr(S, r). For q ≥ r, the endomorphisms ωq(S, r) satisfy the follow-

ing recursion.

Lemma 4.1. For q ≥ r, we have

Ψq
S,r =

s−r−1∑

k=0

(
r + k − 1

k

)
ωq(S, r + k).

Proof. If T ⊂ [n] satisfies |T | = r + 1, then Dep(T (T, r))∗ = {K | K ⊇ T}, and it
is readily checked that mK(T, r) = 1 for each such K. Hence, ωq(T, r) =

∑
K⊇T ω

q
K ,

and we have

Ψq
S,r =

∑

T⊂S
|T |=r+1

∑

K⊇T

ωq
K =

∑

|K∩S|≥r+1

ωq
K .
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If |K ∩ S| = r + p, then ωq
K occurs

(
r+p
r+1

)
times in this sum, so

Ψq
S,r =

∑

|K∩S|≥r+1

ωq
K =

∑

p≥1

∑

|K∩S|=r+p

(
r + p

r + 1

)
ωq

K .

If K ∈ Dep(T (S, j))∗, then |K ∩S| ≥ j+1, and mK(S, j) = |K ∩S|− j. It follows
that ωq(S, j) =

∑
|K∩S|≥j+1(|K ∩ S| − j)ω

q
K . Hence,

s−r−1∑

k=0

(
r + k − 1

k

)
ωq(S, r + k) =

s−r−1∑

k=0

∑

i≥k+1

∑

|K∩S|=r+i

(
r + k − 1

k

)
(i− k)ωq

K

Rewriting this last sum, we obtain

s−r−1∑

k=0

(
r + k − 1

k

)
ωq(S, r + k) =

∑

p≥1

∑

|K∩S|=r+p

p−1∑

j=0

(
r + j − 1

j

)
(p− j)ωq

K .

A straightforward inductive argument shows that
∑p−1

j=0

(
r+j−1

j

)
(p−j) =

(
r+p
r+1

)
, which

completes the proof. ˜

Given S, recall that ηS =
∑

i∈S yiei and yS =
∑

i∈S yi = ∂ηS.

Lemma 4.2. Let J ⊂ S and L ⊂ [n] \ S. Then

Ψq
S,r(eJeK) =

{
0 if |J | ≤ r − 1,(

r+p
r

)
ySeJeK −

(
r+p−1

r−1

)
ηS(∂eJ)eK if |J | = r + p, where p ≥ 0.

Proof. Given (J, L), it follows from Definition 2.2 that ωq
K(eJeL) 6= 0 only for the

following K:

(4.1)
(J, L), (Jk, L, n + 1), (J, Lk, n+ 1),
(i, J, L), (J, L, n + 1), (i, Jk, L, n + 1), (i, J, Lk, n+ 1),

where i /∈ (J, L).
If |J | ≤ r − 1, then |K ∩ S| ≤ r for each of the above K, so T 6⊂ K for all T ⊂ S

with |T | = r + 1. It follows that ωq(T, r)(eJeL) = 0 for each such T . Consequently,
Ψq

S,r(eJeL) = 0.
Let T ⊂ S be a subset of cardinality r + 1, and note that Ψq

T,r =
∑

K⊃T ω
q
K , so

Ψq
S,r =

∑
T⊂S Ψq

T,r, where the sum is over all T ⊂ S with |T | = r + 1. Given such a
T , if |T ∩ J | ≤ r− 1, then none of the sets K recorded in (4.1) contains T . It follows
that Ψq

T,r(eJeL) = 0 if |T ∩ J | ≤ r − 1.
Suppose |J | = r. If |J ∩ T | = r, then T ≡ (i, J) for some i ∈ S \ J , and

Ψq
T,r(eJeL) = ω(i,J,L)(eJeL) +

q−r∑

k=1

ω(i,J,Lk,n+1)(eJeL)

= yi∂(eieJeL) +

q−r∑

k=1

(−1)r+kyieieJeLk

= yieJeL − yiei∂(eJeL) + (−1)ryieieJ∂eL = yieJeL − yiei(∂eJ)eL.
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Therefore, using the identity yJeJ = ηJ∂eJ , we have

Ψq
S,r(eJeL) =

∑

T⊂S

Ψq
T,r(eJeL) =

∑

i∈S\J

(yieJeL − yiei(∂eJ)eL)

= (yS − yJ)eJeL − (ηS − ηJ)(∂eJ)eL = ySeJeL − ηS(∂eJ)eL.

Now, assume that |J | = r + p for some p ≥ 1. As above, we have Ψq
T,r(eJeL) = 0

if |T ∩ J | 6= r, r + 1. If |T ∩ J | = r + 1, then T ⊆ J and all of the sets K of (4.1)
contain T . In this instance, Ψq

T,r(eJeL) = ψ(eJeL), where

ψ = ω(J,L) + ω(J,L,n+1) +

q∑

k=1

(
ω((J,L)k,n+1) +

∑

i/∈(J,L)

ω(i,(J,L)k,n+1)

)

Writing J ≡ (T, J ′), a calculation reveals that Ψq
T,r(eJeL) = ψ(eJeL) = yT eJeL.

If |T ∩ J | = r, then T \ T ∩ J = {t} for some t ∈ S \ J . For such T , of the sets K
from (4.1), only (t, J, L), (t, Jk, L, n + 1) for jk /∈ T , and (t, J, Lk, n + 1) contain T .
This observation, and a calculation, yields

Ψq
T,r(eJeL) =

(
ω(t,J,L) +

∑

jk /∈T

ω(t,Jk,L,n+1) +

q−r−p∑

k=1

ω(t,J,Lk,n+1)

)
(eJeL)

=
(
ω(t,J,L) +

r+p∑

k=1

ω(t,(J,L)k,n+1) −
∑

jk∈T

ω(t,Jk,L,n+1)

)
(ejeL)

= yteJeL −
∑

jk∈T

(−1)k−1yteteJk
eL.

Summing over all T ⊂ S with |T ∩ J | = r, we obtain

∑

|T∩J |=r

Ψq
T,r(eJeL) =

∑

t∈S\J

∑

A⊂[r+p]
|A|=r

(
yteJeL −

r∑

i=1

(−1)ai−1yteteJai
eL

)

=

(
r + p

r

)
(yS − yJ)eJeL −

∑

t∈S\J

r+p∑

k=1

(−1)k−1

(
r + p− 1

r − 1

)
yteteJk

eL

=

(
r + p

r

)
(yS − yJ)eJeL −

∑

t∈S\J

(
r + p− 1

r − 1

)
ytet(∂eJ)eL

=

(
r + p

r

)
ySeJeL −

(
r + p− 1

r

)
yJeJeL −

(
r + p− 1

r − 1

)
ηS(∂eJ)eL.
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Recall that Ψq
T,r(eJeL) = yT eJeL for T ⊂ J . Summing over all T ⊂ J , we obtain∑

T⊂J Ψq
T,r(eJeL) =

(
r+p−1

r

)
yJeJeL. Therefore,

Ψq
S,r(eJeL) =

(∑

T⊂S

Ψq
T,r

)
(eJeL) =

( ∑

|T |=r

Ψq
T,r +

∑

|T |=r+1

Ψq
T,r

)
(eJeL)

=

(
r + p

r

)
ySeJeL −

(
r + p− 1

r − 1

)
ηS(∂eJ)eL

if |J | = r + p. ˜

Let λ = (λ1, . . . , λn) be a collection of weights, and consider the endomorphism
ωq

–
(S, r) : Aq(G) → Aq(G) of the Orlik-Solomon algebra obtained by specializing

ωq(S, r) at λ. Given S, we abuse notation and write ηS =
∑

i∈S λiei. Recall the
spanning set Bq,r

S (λ) = Vq,r
S (λ)

⋃
Wq,r

S (λ) of Aq(G) from Lemma 2.4.

Theorem 4.3. Let λ be a collection of weights satisfying λS 6= 0. Then the special-
ization, ωq

–
(S, r), of ωq(S, r) at λ is diagonalizable, with eigenvalues 0 and λS.

1. The 0-eigenspace is spanned by the set of vectors Vq,r
S (λ) and has dimension

r∑

p=0

(
s

p

)(
n− s

q − p

)
−

(
s− 1

r

)(
n− s

q − r

)
.

2. The λS-eigenspace is spanned by the set of vectors Wq,r
S (λ) and has dimension

min(q,s)∑

p=r+1

(
s

p

)(
n− s

q − p

)
+

(
s− 1

r

)(
n− s

q − r

)
.

Proof. By Lemma 2.4, the set of vectors Bq,r
S (λ) = Vq,r

S (λ)
⋃
Wq,r

S (λ) spans the vec-
tor space Aq(G`

n). So to establish this result, it suffices to show that these vec-
tors are eigenvectors of the endomorphism ωq

–
(S, r), and that the dimensions of the

eigenspaces are as asserted. We will prove this by induction on q − r.
For ease of notation, we will suppress dependence on λ in the proof, and, for

instance, write simply ωq(S, r) = ωq
–
(S, r) and Ψq

S,r = Ψq
S,r|yj 7→λj

. Using Lemma 2.1,
it suffices to consider the case S ⊂ [n]. Let J ⊂ S, K ⊂ [n] \ S, and recall that

Vq,r
S = {eJeK | |J | ≤ r − 1}

⋃
{ηSeJeK | |J | = r − 1} and

Wq,r
S = {eSeK (if q ≥ s)}

⋃
{(∂eJ)eK | |J | ≥ r + 1}

⋃
{ηSeJeK | |J | ≥ r}.

In the case q − r = 0, we have Vr,r
S = {eJeK | |J | ≤ r − 1}

⋃
{ηSeJ | |J | = r − 1},

Wr,r
S = {∂eJ | |J | = r + 1}, and ωr(S, r) = Ψr

S,r. By Lemma 4.2, if |J | ≤ r − 1, then
Ψr

S,r(eJeK) = 0. If |J | = r − 1, then, using Lemma 4.2 again, we have

Ψr
S,r(ηSeJ) =

∑

i∈S

λiΨ
r
S,r(eieJ) =

∑

i∈S

λi(λSeieJ − ηS∂(eieJ))

= λSηSeJ −
∑

i∈S

λiηS(eJ − ei∂eJ)

= λSηSeJ − λSηSeJ + ηSηS∂eJ = 0.
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Thus, every element of Er(0) = spanVr,r
S is a 0-eigenvector of ωr(S, r). A straight-

forward exercise reveals that dimEr(0) =
∑r

k=0

(
s
k

)(
n−s
r−k

)
−

(
s−1

r

)
. If |J | = r+1, then,

using Lemma 4.2 again,

Ψr
S,r(∂eJ) =

r+1∑

k=1

(−1)k−1Ψr
S,r(eJk

) =
r+1∑

k=1

(−1)k−1(λSeJk
− ηS∂eJk

)

= λS∂eJ − ηS∂
2eJ = λS∂eJ

Thus, every element of Er(λS) = spanWr,r
S is a λS-eigenvector of ωr(S, r). Note

that dimEr(λS) =
(

s−1
r

)
. Since dimEr(0) + dimEr(λS) = dimAr(G`

n), the above
calculations establish Theorem 4.3 in the case q − r = 0.

If q − r ≥ 1, then by induction, for each k ≥ 1, ωq(S, r + k) is diagonalizable,

with eigenvalues 0 and λS, and corresponding eigenspaces Er+k(0) = spanVr+k,r
S and

Er+k(λS) = spanWr+k,r
S . In the determination of the eigenstructure of ωq(S, r), we

will use the recursion provided by Lemma 4.1 in the following form:

(4.2) ωq(S, r) = Ψq
S,r −

s−r−1∑

k=1

(
r + k − 1

k

)
ωq(S, r + k).

First, consider the 0-eigenspace of the endomorphism ωq(S, r). If |J | ≤ r− 1, then
by (4.2), Lemma 4.2, and induction, we have

ωq(S, r)(eJeK) = Ψq
S,r(eJeK)−

s−r−1∑

k=1

(
r + k − 1

k

)
ωq(S, r + k)(eJeK) = 0.

If |J | = r − 1, then ωq(S, r + k)(ηSeJeK) = 0 for k ≥ 1 by Lemma 4.2. Using (4.2)
and Lemma 4.2, we have

ωq(S, r)(ηSeJeK) = Ψq
S,r(ηSeJeK)−

s−r−1∑

k=1

(
r + k − 1

k

)
ωq(S, r + k)(ηSeJeK)

= Ψq
S,r(ηSeJeK) =

∑

i∈S

λiΨ
q
S,r(eieJeK)

=
∑

i∈S

[
λiλSeieJeK − λiηS∂(eieJ)eK

]

= λSηSeJeK −
∑

i∈S

λiηSeJeK +
∑

i∈S

λiηSei(∂eJ)eK

= λSηSeJeK − λSηSeJeK + ηSηS(∂eJ)eK = 0.

Next, consider the λS-eigenspace. If q ≥ s, we must show that eSeK is an eigen-
vector of ωq(S, r) corresponding to the eigenvalue λS for each K ⊂ [n] \ S with
|K| = q− s. By induction, we have ωq(S, r+ k)(eSeK) = λSeSeK for each k ≥ 1. By
Lemma 4.2, we have Ψq

S,r(eSeK) =
(

s
r

)
λSeSeK −

(
s−1
r−1

)
ηS∂eSeK . Since ηS∂eS = λSeS,
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we have Ψq
S,r(eSeK) =

(
s−1

r

)
λSeSeK . Hence, by (4.2), we have

ωq(S, r)(eSeK) = Ψq
S,r(eSeK)−

s−r−1∑

k=1

(
r + k − 1

k

)
ωq(S, r + k)(eSeK)

=

(
s− 1

r

)
λSeSeK −

s−r−1∑

k=1

(
r + k − 1

k

)
λSeSeK = λSeSeK ,

using the binomial identities

(4.3)

p∑

k=0

(
N + k

k

)
=

(
N + p+ 1

p

)
=

(
N + p+ 1

N + 1

)
,

with N = r − 1 and p = s− r − 1.
If |J | ≥ r + 1, we must show that ωq(S, r)(∂eJeK) = λS∂eJeK . Suppose |J | =

r + p+ 1 for some p ≥ 0. Then, by Lemma 4.2, we have

Ψq
S,r(∂eJeK) =

r+p+1∑

i=1

(−1)i−1Ψq
S,r(eJi

eK)

=

r+p+1∑

i=1

(−1)i−1

[(
r + p

r

)
λSeJi

eK −

(
r + p− 1

r − 1

)
ηS(∂eJi

)eK

]

=

(
r + p

r

)
λS(∂eJ)eK −

(
r + p− 1

r − 1

)
ηS(∂2eJ)eK

=

(
r + p

r

)
λS(∂eJ)eK .

By induction, we have

ωq(S, r + k)((∂eJ)eK) =

{
λS(∂eJ)eK if 1 ≤ k ≤ p,

0 if p+ 1 ≤ k ≤ s− r − 1.

So using the recursion (4.2) and the identities (4.3), we obtain

ωq(S, r)((∂eJ)eK) =

(
r + p

r

)
λS(∂eJ)eK −

p∑

k=1

(
r + k − 1

k

)
λS(∂eJ)eK

= λS(∂eJ)eK .
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If |J | ≥ r, we must show that ωq(S, r)(ηSeJeK) = λSηSeJeK . Suppose |J | = r + p
for some p ≥ 0. Then, by Lemma 4.2, we have

Ψq
S,r(ηSeJeK) =

∑

i∈S

λiΨ
q
S,r(eieJeK)

=
∑

i∈S

yi

[(
r + p+ 1

r

)
λSeieJeK −

(
r + p

r − 1

)
ηS∂(eieJ)eK

]

=

(
r + p+ 1

r

)
λSηSeJeK −

(
r + p

r − 1

) ∑

i∈S

λiηS(eJ − ei∂eJ)eK

=

[(
r + p+ 1

r

)
−

(
r + p

r − 1

)]
λSηSeJeK +

(
r + p

r − 1

)
ηSηS(∂eJ)eK

=

(
r + p

r

)
λSηSeJeK .

By induction, we have

ωq(S, r + k)(ηSeJeK) =

{
λSηSeJeK if 1 ≤ k ≤ p,

0 if p+ 1 ≤ k ≤ s− r − 1.

So using the recursion (4.2) and the identities (4.3), we obtain ωq(S, r)(ηSeJeK) =
λSηSeJeK as above.

Thus the vectors in the sets Vq,r
S (λ) and Wq,r

S (λ) are eigenvectors of ωq(S, r)
corresponding to the eigenvalues 0 and λS as asserted. Since these vectors span
Aq(G`

n) by Lemma 2.4, it remains to compute the dimensions of the eigenspaces
Eq(0) = spanVq,r

S and Eq(λS) = spanWq,r
S corresponding to these eigenvalues.

If |J | = p and |J |+ |K| = q, then span{eJeK | J ⊂ S,K ⊂ [n] \ S} has dimension
(
s

p

)(
n− s

q − p

)
.

If |J | = p + 1 and |J | − 1 + |K| = q, then span{(∂eJ)eK | J ⊂ S,K ⊂ [n] \ S} has
dimension

dim im[∂ : Ap+1(Gs
s)→ Ap(Gs

s)] ·

(
n− s

q − p

)
=

(
s− 1

p

)(
n− s

q − p

)
.

If |J | = p − 1 and |J | + 1 + |K| = q, then span{ηSeJeK | J ⊂ S,K ⊂ [n] \ S} has
dimension

dim ker[ηS : Ap(Gs
s)→ Ap+1(Gs

s)] ·

(
n− s

q − p

)
=

[(
s

p

)
−

(
s− 1

p

)] (
n− s

q − p

)
.

Using these calculations, it is readily checked that

dimEq(0) =

r∑

p=0

(
s

p

)(
n− s

q − p

)
−

(
s− 1

r

)(
n− s

q − r

)
, and

dimEq(λS) =

min(q,s)∑

p=r+1

(
s

p

)(
n− s

q − p

)
+

(
s− 1

r

)(
n− s

q − r

)
.



GAUSS-MANIN CONNECTIONS FOR ARRANGEMENTS, IV 15

The fact that dimEq(0) + dimEq(λS) = dimAq(G`
n) =

(
n
q

)
may be checked using the

binomial identities
k∑

p=0

(
m

p

)(
N

k − p

)
=

(
m+N

k

)
and

m∑

p=0

(
m

p

)(
N

k + p

)
=

(
m+N

m+ r

)
=

(
m+N

N − k

)

with m = s, N = n − s, and k = q in the case q < s, and m = s, N = n − s, and
k = n− s− q in the case q ≥ s. ˜

If n = ` and λ 6= 0, the complex (A•(G), e–) is acyclic. So assume that n > `.
Then, for λ 6= 0, the cohomology of this complex is concentrated in dimension `,
and dimH`(G) =

(
n−1

`

)
. Let ρ = ρ

G
: A`(G) → H`(G) denote the projection. Since

ω•
–
(S, r) is a chain map, the kernel of this projection, ker(ρ) ⊂ A`(G), is an invariant

subspace for ω`
–
(S, r).

Lemma 4.4. Let T : V → V be an endomorphism of a finite dimensional (complex)
vector space, and V ′ an invariant subspace. If T is diagonalizable, then the induced
endomorphism T ′′ on the quotient V ′′ = V/V ′ is also diagonalizable, and the spectrum
of T ′′ is contained in the spectrum of T .

Proof. Let T ′ denote the restriction of T to V ′, and let π : V → V ′′ be the projection.
The vector space V admits a basis B = {v1, . . . , vk, vk+1, . . . , vn} for which B′ =
{v1, . . . , vk} is a basis for the subspace V ′ and B′′ = {π(vk+1), . . . , π(vn)} is a basis
for the quotient V ′′. The matrix of T relative to the basis B is

A =

(
A′ ∗
0 A′′

)
,

where A′ is the matrix of T ′ relative to B′ and A′′ is the matrix of the induced
endomorphism T ′′ relative to B′′.

Let r1, . . . , rm be the distinct eigenvalues of T . Since T is diagonalizable, the
minimal polynomial p of T factors as p(t) = (t − r1) · · · (t − rm). The polynomial p
annihilates the matrix A of T , p(A) = 0. Using the block decomposition of A above,
it follows that p also annihilates the matrix A′′ of T ′′, p(A′′) = 0. Consequently, the
minimal polynomial p′′ of T ′′ divides p. Hence, p′′ is of the form (t− ri1) · · · (t− rij),
T ′′ is diagonalizable, and the eigenvalues of T ′′ are among the eigenvalues of T . ˜

For an arrangement A of arbitrary combinatorial type T , and T -nonresonant
weights λ, we recall the βnbc basis of [7] for the single nonvanishing cohomology
group H`(T ) = H`(M;L). Recall that the hyperplanes of A = {Hj}

n
j=1 are ordered.

A circuit is an inclusion-minimal dependent set of hyperplanes in A, and a broken
circuit is a set T for which there exists H < min(T ) so that T ∪ {H} is a circuit.
A frame is a maximal independent set, and an nbc frame is a frame which con-
tains no broken circuit. Since A contains ` linearly independent hyperplanes, every
frame has cardinality `. The set of nbc frames is a basis for A`(T ). An nbc frame
B = (Hj1 , . . . , Hj`

) is a βnbc frame provided that for each k, 1 ≤ k ≤ `, there exists
H ∈ A such that H < Hjk

and (B \ {Hjk
}) ∪ {H} is a frame. Note that these

constructions depend only on the combinatorial type T of A, and let βnbc(T ) be
the set of all βnbc frames of an arrangement of type T .
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Definition 4.5. Given B = (Hj1 , . . . , Hj`
) in βnbc(T ), define ξ(B) ∈ A`(T ) by

ξ(B) = ∧`
p=1aλ(Xp), where Xp =

⋂`
k=pHjk

and aλ(X) =
∑

X⊆Hi
λiai. Denote the

cohomology class of ξ(B) in H`(T ) = H`(A•(T ), a–) by the same symbol. The set
{ξ(B) | B ∈ βnbc(T )} is the βnbc basis for H`(T ).

Theorem 4.6. Let S ⊂ [n + 1] be a subset of cardinality s, and fix r, 1 ≤ r ≤
min(`, s − 1). For G-nonresonant weights λ satisfying λS 6= 0, the endomorphism
Ω–(S, r) of H`(G) induced by ω`

–
(S, r) is diagonalizable, with eigenvalues 0 and λS.

The dimension of the λS-eigenspace is

min(`,s)∑

p=r+1

(
s

p

)(
n− s− 1

`− p

)
+

(
s− 1

r

)(
n− s− 1

`− r

)
,

and the dimension of the 0-eigenspace is
r∑

p=0

(
s

p

)(
n− s− 1

`− p

)
−

(
s− 1

r

)(
n− s− 1

`− r

)
.

Proof. By Theorem 4.3 and Lemma 4.4, the endomorphism Ω–(S, r) is diagonalizable,
with spectrum contained in {0, λS}.

Let I = {I = (i1, . . . , i`) | 1 ≤ i1 < i2 · · · < i` ≤ n}. Then {eI | I ∈ I} is the nbc

basis of A`(G) and {ξI = λi1 · · ·λi`eI | I ∈ I, 1 /∈ I} is the βnbc basis of H`(G). The
projection ρ : A`(G)→ H`(G) is given by

ρ(eI) =

{
(λi1 · · ·λi`)

−1ξI if 1 /∈ I,

−(λi1 · · ·λi`)
−1

∑
j /∈I ξjξI1 if 1 ∈ I.

Using Lemma 2.1, we can assume that S ⊂ [2, n]. Since ρ ◦ω`
–
(S, r) = Ω–(S, r) ◦ ρ,

if v is an eigenvector of ω`
–
(S, r) and ρ(v) 6= 0, then ρ(v) is an eigenvector of Ω–(S, r).

Let J ⊂ S and K ⊂ [2, n] \ S. Note that 1 /∈ K. Then one can check that the
0-eigenspace of Ω–(S, r) is spanned by

{ρ(eJeK) | |J | ≤ r − 1}
⋃
{ρ(ηSeJeK) | |J | = r − 1},

that the λS-eigenspace of Ω–(S, r) is spanned by

{ρ(eSeK) | if ` ≥ s}
⋃
{ρ((∂eJ)eK) | |J | ≥ r + 1}

⋃
{ρ(ηSeJeK) | |J | ≥ r},

and that the dimensions of these eigenspaces are as asserted. ˜

Example 4.7. Let n = 5, ` = 2, S = {3, 4, 5}, and r = 1. By Theorem 4.6, for
G-nonresonant weights satisfying λS 6= 0, the endomorphism Ω–(S, r) of H2(G) '
C6 is diagonalizable, the λS-eigenspace is 5-dimensional, and the 0-eigenspace is 1-
dimensional (note that

(
p
q

)
= 0 if p < q). Calculating as in the proof of Theorem 4.6,

we find that the λS-eigenspace has basis

ρ(λ2λ3λ5(∂e3,5)e2) = λ5ξ2,3 − λ3ξ2,5, ρ(−λ3η3,4,5e3) = ξ3,4 + ξ3,5,

ρ(λ2λ4λ5(∂e4,5)e2) = λ5ξ2,4 − λ4ξ2,5, ρ(λ5η3,4,5e5) = ξ3,5 + ξ4,5,

ρ(λ3λ4λ5∂e3,4,5) = λ5ξ3,4 − λ4ξ3,5 + λ3ξ4,5,
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and the 0-eigenspace has basis ρ(λ1λ2e1,2) = ξ2,3 + ξ2,4 + ξ2,5.

5. Nonresonant eigenvalues

In this section, we prove that the Gauss-Manin endomorphism Ω–(T ′, T ) of (1.1)
is diagonalizable and determine its eigenvalues. We accomplish this by showing that

the endomorphism Ω̃–(T ′, T ) in the commutative diagram (1.2) may be replaced by
the endomorphism Ω–(S, r), whose eigenstructure was computed in Theorem 4.6.

For an arbitrary type T , let I•(T ) be the corresponding Orlik-Solomon ideal, so
that A•(T ) ' A•(G)/I•(T ). The natural projection of A•(G) onto A•(T ) is a chain
map π : (A•(G), e–)→ (A•(T ), a–) which, for T -nonresonant weights λ, induces the
projection τ : H`(G) → H`(T ) upon passage to cohomology. If ρ

G
: A`(G) → H`(G)

and ρ
T

: A`(T )→ H`(T ) are the projections, then τ ◦ ρ
G

= ρ
T
◦ π.

Theorem 5.1. If T ′ is a degeneration of T with principal dependence (S, r), then
Ω–(T ′, T ) ◦ τ = τ ◦ Ω–(S, r). In other words, the following diagram commutes:

H`(G)
τ

−−−→ H`(T )yΩ–(S,r)

yΩ–(T ′,T )

H`(G)
τ

−−−→ H`(T )

Proof. As noted in the introduction, the Gauss-Manin endomorphism Ω–(T ′, T ) of

H`(T ) is induced by the endomorphism Ω̃–(T ′, T ) of H`(G), see [4, Thm. 7.3] and

(1.2). In turn, Ω̃–(T ′, T ) is the map in cohomology induced by the cochain endomor-
phism ω•

–
(T ′, T ) of the complex (A•(G), e–), see Theorem 3.1. The map ω•

–
(T ′, T )

also induces a cochain endomorphism ω̄•
–
(T ′, T ) of (A•(T ), a–), and the Gauss-Manin

endomorphism Ω–(T ′, T ) may be realized as the map in cohomology induced by the
latter, see [5, Thm. 7.1]. In summary, we have the following commutative diagram.

(5.1)

A`(G)
π - A`(T )

H`(G)
τ -

ρ
G

-

ω̄`
–
(T ′, T )

H`(T )

ρ
T

-

A`(G)

ω`
–
(T ′, T )

?
π - A`(T )

?

H`(G)

Ω̃–(T ′, T )

?
τ -

ρ
G

-

H`(T )

Ω–(T ′, T )

?

ρ
T

-
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To establish the theorem, it suffices to show that the endomorphisms ω•
–
(T ′, T ) and

ω•
–
(S, r) of A•(G) induce the same endomorphism of A•(T ).
The Orlik-Solomon ideal I•(T ) gives rise to a subcomplex I•R(T ) = I•(T )⊗R of the

Aomoto complex A•
R(G), with quotient A•

R(T ), the Aomoto complex of type T . Since
ω•

–
(T ′, T ) and ω•

–
(S, r) are specializations at λ of the corresponding endomorphims of

the Aomoto complex A•
R(G), it is enough to show that ω•(T ′, T ) and ω•(S, r) induce

the same endomorphism of A•
R(T ).

By Theorem 3.2, there are dependence pairs (Si, ri), 1 ≤ i ≤ k, such that Dep(T )∗

contains Dep(T (Si, ri))
∗ and Dep(T ′)∗ =

⋃k
i=0 Dep(T (Si, ri))

∗, where (S0, r0) =
(S, r) is the pair of principal dependence. It follows that there are constants ci
so that ω•(T ′) = ω•(S, r) +

∑k
i=1 ci · ω

•(Si, ri).
If Dep(T (Si, ri))

∗ ⊂ Dep(T )∗, it follows from Theorem 4.3 that the image of
ω•(Si, ri) : A•

R(G) → A•
R(G) is contained in I•R(T ). Consequently, the endomor-

phisms ω̄•(T ′) and ω̄•(S, r) of the Aomoto complex A•
R(T ) induced by ω•(T ′) and

ω•(S, r) are equal.
Finally, ω•(T ′) = ω•(T ′, T ) +ω•(T ), see (3.3). It follows from the definitions that

the image of ω•(T ) is also contained in I•R(T ). Hence, the endomorphisms ω̄•(T ′)
and ω̄•(T ′, T ) of A•

R(T ) induced by ω•(T ′) and ω•(T ′, T ) are equal. ˜

Theorem 4.6 and Theorem 5.1 yield the result stated in the introduction.

Theorem 5.2. Let T ′ be a degeneration of T with principal dependence (S, r), and
λ a collection of T -nonresonant weights satisfying λS 6= 0. Then the Gauss-Manin
endomorphism Ω–(T ′, T ) is diagonalizable, with spectrum contained in {0, λS}.

Proof. By Theorem 4.6, the endomorphism Ω–(S, r) of H`(G) is diagonalizable, with
eigenvalues 0 and λS. By Theorem 5.1, we have Ω–(T ′, T )◦τ = τ ◦Ω–(S, r). Checking
that ker(τ ) ⊂ H`(G) is an invariant subspace for Ω–(S, r), the result follows from
Lemma 4.4. ˜

Remark 5.3. The Gauss-Manin endomorphism Ω–(T ′, T ) of H`(T ) is determined by
the endomorphism Ω–(S, r) of H`(G) and the projection τ : H`(G)→ H`(T ) via the
equality Ω–(T ′, T ) ◦ τ = τ ◦ Ω–(S, r). Together with the explicit description of the
eigenstructure of Ω–(S, r) provided by Theorems 4.3 and 4.6, this yields an algorithm
for finding the (geometric) multiplicities of the eigenvalues of Ω–(T ′, T ).

The Gauss-Manin connection ∇ =
∑

ΘT ′ ⊗ Ω–(T ′, T ) on the vector bundle H→
B(T ) with fiber H`(T ) corresponds to a monodromy representation Ψ : π1(B(T ))→
AutC

(
H`(T )

)
. For a degeneration T ′ of T , let γT ′ ∈ π1(B(T )) be a simple loop in

B(T ) around a generic point in B(T ′). Then the automorphism Ψ(γT ′) is conjugate
to exp

(
−2π i Ω–(T ′, T )

)
, see for instance [3, Prop. 4.1]. Theorem 5.2 yields:

Corollary 5.4. Let T ′ be a degeneration of T with principal dependence (S, r), and
λ a collection of T -nonresonant weights satisfying λS 6= 0. Then the automorphism
Ψ(γT ′) is diagonalizable, with spectrum contained in {1, exp(−2π iλS)}.

We conclude with several examples which illustrate these results.
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5.5. Codimension zero. Recall that G denotes the combinatorial type of a gen-
eral position arrangement of n hyperplanes in C`, and that n ≥ `. Weights λ =
(λ1, . . . , λn) are G-nonresonant if λj 6= 0 for each j. If n = `, then H•(G) = 0, so we
assume that n > `. Then dimH`(G) =

(
n−1

`

)
. The moduli space B(G) has codimen-

sion zero in (CP
`)n, and consists of all matrices b for which every (` + 1) × (` + 1)

minor is nonzero, see (3.1). For general position arrangements, the Gauss-Manin
connection was determined by Aomoto and Kita [2]. The corresponding connection
1-form is given by ∇ =

∑
ΘT ⊗ Ω–(T ,G), where the sum is over all ` + 1 element

subsets S of [n+ 1], T = T (S, `+ 1), and ΘT is a logarithmic 1-form on (CP
`)n with

a simple pole along the divisor defined by the vanishing of the (`+1)× (`+1) minor
of b with rows indexed by S. Theorem 4.6 gives:

Proposition 5.6. Let S be an ` + 1 element subset of [n], let T = T (S, ` + 1), and
λ a collection of G-nonresonant weights satisfying λS 6= 0. Then the Gauss-Manin
endomorphism Ω–(T ,G) is diagonalizable, with eigenvalues 0 and λS. The dimension
of the λS-eigenspace is 1, and the dimension of the 0-eigenspace is

(
n−1

`

)
− 1.

5.7. Codimension one. If T is a combinatorial type for which the cardinality of
Dep(T )`+1 is 1, then the moduli space B(T ) is of codimension one in (CP

`)n. Write
Dep(T )`+1 = {K}. As shown by Terao [15], noted in the proof of Theorem 3.2,
and illustrated in Example 3.4, the combinatorial type T admits three types of de-
generation T ′ = T (S, r). The principal dependencies of these degenerations are as
follows.

I: (S, `), where |S| = `+ 1 and |S ∩K| ≤ `− 1;
II: (S, `− 1), where S = Kp, for each p, 1 ≤ p ≤ `+ 1;

III: (S, `), where S = (m,K), for each m ∈ [n+ 1] \K.

For the combinatorial type T and T -nonresonant weights λ, the Gauss-Manin con-
nection was determined by Terao [15]. The corresponding connection 1-form is given
by ∇ =

∑
ΘT ′ ⊗ Ω–(T ′, T ), where T ′ ranges over the three types of degeneration

of T noted above. In [15], Terao also found the eigenvalues of the endomorphism
Ω–(T ′, T ) and their algebraic multiplicities. If λ satisfies λS 6= 0 for each of the prin-
cipal dependence sets S recorded above, Terao’s result concerning the eigenstructure
of the endomorphism Ω–(T ′, T ) may be strengthened as follows.

Proposition 5.8. Let T be a combinatorial type of codimension one, let T ′ = T (S, r)
be a degeneration of T , and λ a collection of T -nonresonant weights satisfying
λS 6= 0. Then the Gauss-Manin endomorphism Ω–(T ′, T ) is diagonalizable, with
eigenvalues 0 and λS.

1. If T ′ is a degeneration of type I, the dimension of the λS-eigenspace is 1, and
the dimension of the 0-eigenspace is dimH`(T )− 1 =

(
n−1

`

)
− 2.

2. If T ′ is a degeneration of type II, the dimension of the λS-eigenspace is n−`−1,
and the dimension of the 0-eigenspace is

(
n−1

`

)
− n+ `.

3. If T ′ is a degeneration of type III, the dimension of the λS-eigenspace is `, and
the dimension of the 0-eigenspace is

(
n−1

`

)
− `− 1.
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Proof. By Theorem 5.2, the endomorphism Ω–(T ′, T ) is diagonalizable, with spec-
trum contained in {0, λS}.

Without loss, assume that Dep(T )`+1 = {K}, where K = [` + 1]. Then the nbc

basis of A`(T ) consists of monomials aI , where I ⊂ [n], |I| = `, and I 6= [2, ` + 1].
Write F = [2, `+ 1]. The projection π : A`(G)→ A`(T ) is given by

π(eI) =

{
aI if I 6= F ,

a1∂aF if I = F .

The βnbc basis for H`(T ) consists of monomials ξI , where I ⊂ [2, n], |I| = `, and
I 6= F . The projection ρ = ρ

T
: A`(T )→ H`(T ) is given by

ρ(aI) =





(λi1 · · ·λi`)
−1ξI if 1 /∈ I,

−(λi1 · · ·λi`)
−1

∑
j /∈I ξjξI1 if 1 ∈ I, I 6⊂ K,

−(λKλi1 · · ·λi`)
−1

∑
j /∈K

[
λIξjξI1 + ξjξp∂ξI1

]
if 1 ∈ I, I = K \ {p}.

If T ′ is a degeneration of type I with principal dependence (S, `), then |S∩K| ≤ `−1
and we can assume that S ∩ K ⊂ [3, ` + 1]. By Theorem 4.3, the endomorphism
ω`

–
(S, `) of A`(G) is diagonalizable, with eigenvalues 0 and λS. The 0-eigenspace

is spanned by {eJeL | |J | ≤ ` − 1}
⋃
{ηSeJ | |J | = ` − 1}, where J ⊂ S and L ⊂

[n]\S, and the λS-eigenspace is spanned by ∂eS. By Theorem 5.1, the endomorphism
Ω–(T ′, T ) of H`(T ) satisfies Ω–(T ′, T ) ◦ ρ ◦ π = ρ ◦ π ◦ ω`

–
(S, `), see (5.1). Write

S = (s1, . . . , s`+1). Calculations with the projections π and ρ yield

ρ ◦ π(∂eS) = (λs1 · · ·λs`+1
)−1∂ξS,

ρ ◦ π(eJeL) = (λi1 · · ·λi`)
−1ξJξL, where I = (J, L) and 1 /∈ L,

ρ ◦ π(ηSeJ) = λs1λsp
(λs1 · · ·λs`+1

)−1(ξSp
± ξS1), where J = (s2, . . . , ŝp, . . . , s`+1).

Checking that

{∂ξS)}
⋃
{ξJξL | J ⊂ S, |J | ≤ `− 1, L ⊂ [2, n] \ S}

⋃
{ξSp
± ξS1 | 2 ≤ p ≤ `+ 1}

forms a basis for H`(T ), we conclude that the dimensions of the eigenspaces are as
asserted for a degeneration of type I.

If T ′ is a degeneration of type II with principal dependence (S, ` − 1), we can
assume that S = K1 = [2, ` + 1]. By Theorem 4.3, the endomorphism ω`

–
(S, ` − 1)

of A`(G) is diagonalizable, with eigenvalues 0 and λS. The 0-eigenspace is spanned
by {eJeL | |J | ≤ ` − 2}

⋃
{ηSeJeq | |J | = ` − 2}, where J ⊂ S, L ⊂ [n] \ S, q /∈ S,

and the λS-eigenspace is spanned by {eS}
⋃
{(∂eS)eq | q /∈ S}. Note that the λS-

eigenspace of ω`
–
(S, `−1) has dimension n− `+1. Note also that the λS-eigenvectors

∂eK = eS − e1∂eS and e–∂eS are annihilated by the projection ρ ◦ π. On the other
hand, it is readily checked that

(5.2) {ρ ◦ π((∂eS)eq) | `+ 2 ≤ q ≤ n}
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is a linearly independent set of (n − ` − 1) λS-eigenvectors for Ω–(T ′, T ) in H`(T ).
Additionally, one can check that the set

(5.3) {ρ ◦ π(eJeL) | J ⊂ S, |J | ≤ `− 2}
⋃
{ρ ◦ π(ηSeJeq) | J ⊂ [3, `+ 1], |J | = `− 2}

where L ⊂ [n] \ S and q /∈ S, is a linearly independent set of 0-eigenvectors for
Ω–(T ′, T ) in H`(T ). Checking that the dimension of the subspace spanned by the
vectors (5.3) is dimH`(T ) − (n − ` − 1), since eigenvectors associated to distinct
eigenvalues are linearly independent, the vectors (5.2) and (5.3) form a basis for
H`(T ). Hence, the dimensions of the eigenspaces are as asserted for a degeneration
of type II.

If T ′ is a degeneration of type III with principal dependence (S, `), we can assume
that S = K

⋃
{q} for some q ∈ [`+2, n]. By Theorem 4.3, the endomorphism ω`

–
(S, `)

of A`(G) is diagonalizable, with eigenvalues 0 and λS. The 0-eigenspace is spanned
by {eJeL | |J | ≤ ` − 1}

⋃
{ηSeJ | |J | = ` − 2}, where J ⊂ S, L ⊂ [n] \ S, and the

λS-eigenspace is spanned by {∂eJ | J ⊂ S, |J | = `+ 1}. Note that the λS-eigenspace
of ω`

–
(S, `) has dimension `+ 1. Note also that the λS-eigenvector ∂eK is annihilated

by the projection ρ ◦ π. Recall that F = [2, ` + 1]. Let Sq denote the subspace of
H`(T ) spanned by {ξI | I ⊂ F

⋃
{q}}, and let pq : H`(T ) → Sq be the natural

projection. For J ⊂ F , |J | = ` − 1, a calculation reveals that pq ◦ ρ ◦ π(ηKeJeq) =
λS(λ2 · · ·λ`+1λq)

−1ξJξq. Consequently, the set {ρ ◦ π(ηKeJeq) | J ⊂ F, |J | = `− 1} is
a linearly independent set of ` λS-eigenvectors for Ω–(T ′, T ) in H`(T ). Check that
the set {ρ ◦ π(eJeL) | J ⊂ S1, |J | ≤ `− 1, L ⊂ [n] \S} is a linearly independent set of
dimH`(T )− ` 0-eigenvectors for Ω–(T ′, T ) in H`(T ). It follows that the dimensions
of the eigenspaces are as asserted for a degeneration of type III. ˜

5.9. Further examples. We present three examples of higher codimension.

Example 5.10. Let S be the combinatorial type of the Selberg arrangement A in
C2 with defining polynomial Q(A) = u1u2(u1−1)(u2−1)(u1−u2) depicted in Figure
2. See [1, 14, 10] for detailed studies of the Gauss-Manin connections arising in the
context of Selberg arrangements.
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3

1 2

A

345

1 2

A′

Figure 2. A Selberg arrangement and one degeneration

Here Dep(S)∗ = {126, 346, 135, 245}. Weights λ are S-nonresonant if

λj (1 ≤ j ≤ 6), λ1 + λ2 + λ6, λ1 + λ3 + λ5, λ2 + λ4 + λ5, λ3 + λ4 + λ6 /∈ Z≥0.

For S-nonresonant weights, the βnbc basis for H2(S) is {Ξ2,4,Ξ2,5}, where Ξ2,j =
(λ2a2+λ4a4+λ5a5)λjaj , see Definition 4.5. Recall that λJ =

∑
j∈J λj . The projection
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map τ : H2(G)→ H2(S) is given by

τ (ξi,j) =





−Ξ2,4 − Ξ2,5 if (i, j) = (2, 3),

(λ2,4Ξ2,4 + λ4Ξ2,5)/λ2,4,5 if (i, j) = (2, 4),

(λ5Ξ2,4 + λ2,5Ξ2,5)/λ2,4,5 if (i, j) = (2, 5),

0 if (i, j) = (3, 4),

(−λ5Ξ2,4 − λ3,5Ξ2,5)/λ1,3,5 if (i, j) = (3, 5),

(−λ5Ξ2,4 + λ4Ξ2,5)/λ2,4,5 if (i, j) = (4, 5).

The arrangement A′ in Figure 2 represents one degeneration type S ′ of S. Here
Dep(S ′,S)∗ = {34, 35, 45, 134, 145, 234, 235, 345, 356, 456}. The sets 34, 35, 45, and
345 have r = 1, and the others r = 2. The principal dependence is (S, r), where S =
345 and r = 1. For S-nonresonant weights with λS 6= 0, Ω–(S ′,S) is diagonalizable,
with spectrum contained in {0, λS} by Theorem 5.2. The projection τ annihilates
the 0-eigenspace of Ω–(S, r), and restricts to a surjection E(λS) “ H2(S), where
E(λS) is the λS-eigenspace of Ω–(S, r), see Example 4.7. It follows that Ω–(S ′,S)
has eigenvalues λS, λS. Note that 0 is not an eigenvalue of Ω–(S ′,S) in this instance.

Although the eigenvalues are determined by the principal dependence (S, r), the
same principal dependence may occur for degenerations of different types. Thus the
multiplicities of the eigenvalues depend on the combinatorial types as well.

Example 5.11. Consider the arrangement Ā of type T obtained from the arrange-
ment A in Example 5.10 by rotating line 1 by a (small) angle about the triple point
135, see Figure 3. Here, lines 1 and 2 meet in affine space, so 126 is no longer
dependent. This change implies that dimA2(T ) = 7 and dimH2(T ) = 3.
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Figure 3. A line arrangement and one degeneration

Weights λ are T -nonresonant if

λj (1 ≤ j ≤ 6), λ1 + λ3 + λ5, λ2 + λ4 + λ5, λ3 + λ4 + λ6 /∈ Z≥0.

For T -nonresonant weights, the βnbc basis for H2(T ) is {Ξ2,3,Ξ2,4,Ξ2,5}, where
Ξ2,3 = λ2λ3a2,3 and Ξ2,j = (λ2a2 + λ4a4 + λ5a5)λjaj for j = 4, 5. The projection map
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τ : H2(G)→ H2(T ) is given by

τ (ξi,j) =





Ξ2,3 if (i, j) = (2, 3),

(λ2,4Ξ2,4 + λ4Ξ2,5)/λ2,4,5 if (i, j) = (2, 4),

(λ5Ξ2,4 + λ2,5Ξ2,5)/λ2,4,5 if (i, j) = (2, 5),

0 if (i, j) = (3, 4),

(λ5Ξ2,3 − λ3Ξ2,5)/λ1,3,5 if (i, j) = (3, 5),

(−λ5Ξ2,4 + λ4Ξ2,5)/λ2,4,5 if (i, j) = (4, 5).

The combinatorial type T has a degeneration of type T ′ similar to S ′, represented
by the arrangement Ā′ in Figure 3. As in Example 5.10, the principal dependence
is (S, r), where S = 345 and r = 1. For T -nonresonant weights with λS 6= 0, the
spectrum of Ω–(T ′, T ) is contained in {0, λS}. Calculations with the projection τ
and the eigenspace decomposition of the endomorphism Ω–(S, r) of H2(G) given in
Example 4.7 reveal that Ω–(T ′, T ) has eigenvalues λS, λS, 0.

Example 5.12. The combinatorial type S in Example 5.10 is a degeneration of the
type T in Example 5.11. The principal dependence of this degeneration is (S, r),
where S = 126 and r = 2. For T -nonresonant weights with λS 6= 0, the spectrum
of Ω–(S, T ) is contained in {0, λS}. A calculation shows that the eigenvalues are
λS, 0, 0. It is interesting to note that λS = λ1,2,6 = −λ3,4,5.
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